• 姓名: 王强
  • 性别: 男
  • 职务: 副所长,同位素地球化学国家重点实验室常务副主任
  • 职称: 研究员
  • 学历: 博士研究生
  • 电话: 020-85290277
  • 传真: 020-85290130
  • 电子邮件: wqiang@gig.ac.cn
  • 通讯地址: 广东省广州市天河区科华街511号
    简  历:
  •   王强研究员,1971年1月生于湖北省当阳市,博士,岩石学专业,研究员、岩石学学科组组长、博士生导师,2010年获得国家杰出青年基金,2014年入选国家创新人才推进计划“中青年科技领军人才”,2015年入选中国科学院“引才计划”和广东特支计划“中青年科技领军人才”,2016年入选国家重大人才计划。现任《Geochemical Journal》执行副主编,《Mineralogy and Petrology》、《Solid Earth Sciences》、《岩石学报》和《大地构造与成矿学》副主编,以及《Lithos》、《Tectonophysics》、《The Innovation》、《中国科学-地球科学》、《Journal of Earth Science》、《地球科学》等期刊的编委。已发表论文逾245篇,其中SCI论文逾190篇(第一和通讯作者论文逾126篇),论文被SCI引用逾10000次,h-index 55。

    社会任职:
  •  
    研究方向:
  •        主要从事岩浆岩岩石学、地球化学、地球动力学及相关成矿作用的研究,研究领域:(1)青藏高原岩石圈演化与战略资源形成、高原演化隆升; (2)埃达克质岩及其共生岩石组合与铜金成矿;(3)华南岩浆作用与大陆再造、金属成矿;(4)中亚造山带岩浆作用与地壳生长、金属成矿。
    获奖及荣誉:
  •   1. 1996年,荣获研究生“IET奖”;
      2. 1996年,荣获“中国地质大学优秀学生标兵”和“中国地质大学优秀研究生标兵”称号,并获校友奖励基金;
      3. 2007年,荣获第二届“Shen-Su Sun Award”(孙贤鉥奖);
      4. 2008年,荣获第十二届“侯德封矿物岩石地球化学青年科学家奖(侯德封奖)”;
      5. 2009年,学术成果“华南岩浆作用与地球动力学演化”获广东省科学技术一等奖 (排名第二);
      6. 2009年,荣获第七届“青藏高原青年科技奖”;
      7. 2011年,学术成果“埃达克岩的成因与铜-金-钼成矿” 获广东省科学技术一等奖 (排名第5);
      8. 2012年,荣获十一届“中国科学院杰出青年”荣誉称号;
      9. 2012年,荣获中国共产党中国科学院广州分院、广东省科学院“优秀共产党员”称号;
      10. 2012年,荣获中国科学院广东省教育基地“优秀研究生导师”称号;
      11. 2013年,荣获中国科学院“优秀研究生指导教师”称号;
      12. 2014年,入选国家创新人才推进计划“中青年科技领军人才”;
      13. 2015年,荣获中国科学院“朱李月华优秀教师”奖;
      14. 2015年,入选广东省特支计划“中青年科技领军人才”;
      15. 2016年,入选国家特支计划项目“万人计划”“中青年科技领军人才”;
      16. 2016年,荣获中国地质学会第八届“黄汲清青年地质科技奖”;
      17. 2020年,学术成果“显生宙增生造山过程中大陆地壳的非均匀性生长”获广东省科学技术一等奖 (排名第1)。
    代表论著:
  • 2022

    1. Dan, W., Murphy, J. B., Wang, Q., Zhang, X.-Z., Tang, G.J. 2022. Tectonic evolution of the Proto-Qiangtang Ocean and its relationship with the Palaeo-Tethys and Rheic oceans. GSL Special Publication—The Consummate Geoscientist: A Celebration of the Career of Maarten de Wit", accepted.

    2. Zhang, X. Z., Wang, Q.*, Wyman, D., Kerr, A., Dan, W., Qi, Y., 2022. Tibetan Plateau insights into >1100 crustal melting in the Quaternary. Geology, in press, DOI:10.1130/G50387.1. 

    3. Zhang, L., Wang, Q., Mikhailenko, D. S., Ding, X., Li, W.-C., & Xian, H. (2022). Hydroxychloride-bearing fluid inclusions in ultramafic rocks from New Caledonia: Implications for serpentinization in saline environments on Earth and beyond. Journal of Geophysical Research: Solid Earth, 127, e2022JB024508, in press, https://doi. org/10.1029/2022JB024508.

    4. Qi, Y., Wang, Q.*, Wei, G.-J., Li, J., Wyman, D. A., 2022. Magnesium and calcium isotopic geochemistry of silica-undersaturated alkaline basalts: Applications for tracing recycled carbon. Geochemistry, Geophysics, Geosystems, in press, https://doi.org/10.1029/2022GC010463.

    5. Fan, J.-J., Wang, Q.*, Ma, L., Li, J., Zhang, X.-Z., Zhang, L., Wang, Z.-L., 2022. Extreme Mo isotope variations recorded in high-SiO2 granites: Insights into magmatic differentiation and melt–fluid interaction. Geochimica et Cosmochimica Acta, 334: 241–258, https://doi.org/10.1016/j.gca.2022.08.009.

    6. Xu, C.-B., Zeng, J.-P., Wang, Q.*, Zhang, X.-Z.*, Ou, Q., Wang, J., Hao, L.-L., Chen, Y., 2022. Eocene adakitic quartz monzonites and granite porphyries from the northern Qiangtang Block, central Tibet: Partial melting of sediment-rich m lange. Front. Earth Sci., 10:953448, doi: 10.3389/feart.2022.953448.

    7. Zhang, M.-Y., Hao, L.-L., Wang, Q., Qi, Y., Ma, L., 2022. B–Sr–Nd isotopes of Miocene trachyandesites in Lhasa block of southern Tibet: Insights into petrogenesis and crustal reworking. Front. Earth Sci., 10:953364, doi: 10.3389/feart.2022.953364.

    8. Zhou, J.-S., Wang, Q.*, Wyman, D.A., Zhao, Z.H., Zhang, L., He, P.-L., 2022. The efficiency of copper extraction from magma bodies: Implications for mineralization potential and fluid-silicate melt partitioning of copper. American Mineralogist, 107 (9): 1681–1696, https://doi.org/10.2138/am-2021-7951.

    9. Hao, L.-L., Wang, Q., Ma, L., Qi, Y., and Yang, Y.-N., 2022, Differentiation of continent crust by cumulate remelting during continental slab tearing: Evidence from Miocene high-silica potassic rocks in southern Tibet. Lithos, 426-427, 106780, https://doi.org/10.1016/j.lithos.2022.106780.

    10. Liu, X., Liang, H., Wang, Q.*, Ma, L. *, Yang, J.H., Ou, Q., Guo, H.F., Xiong, X.L., Zeng, J.P., Gou, G.N., and Hao, L.L., 2022, Early Cretaceous Sn-bearing granite porphyries, A-type granites, and rhyolites in the Mikengshan-Qingxixiang-Yanbei area, South China: Petrogenesis and implications for ore mineralization. Journal of Asian Earth Sciences, 235, 105274, https://doi.org/10.1016/j.jseaes.2022.105274.

    11. Tang, G.-J., Wyman, D.A., Wang, Q., Ma, L., Dan, W., Yang, Y.-N., Liu, X.-J., Chen, H.-Y., 2022. Links between continental subduction and generation of Cenozoic potassic–ultrapotassic rocks revealed by olivine oxygen isotopes: A case study from NW Tibet: Contributions to Mineralogy and Petrology, 177, 53,https://doi.org/10.1007/s00410-022-01920-x.

    12. Liu, J.-H., Gou, G.-N., Wang, Q.*, Zhang, X.-Z.*, Guo, H.-F., 2022. Petrogenesis of Eocene high-silica granites in the Maliaoshan area, northern Tibet: Implications for the Eocene magmatic flare-up in the Northern Qiangtang Block: Journal of Asian Earth Sciences, p. 105268, https://doi.org/10.1016/j.jseaes.2022.105268.

    13. Liu, J.-H., Wang, Q.*, Xu, C.-B., Zhou, J.-S., Wang, B.-Z., Li, W.-F., Li, S.-P., Huang, T.-Y., Yan, Q.-H., Song, T.-Z., Wang, C.-T., Zheng, Y., Wang, J.-S., 2022. Geochronology of the Chakabeishan Li–(Be) rare-element pegmatite, Zongwulong orogenic belt, northwest China: Constraints from columbite–tantalite U–Pb and muscovite–lepidolite 40Ar/39Ar dating. Ore Geology Reviews, 146, 104930,https://doi.org/10.1016/j.oregeorev.2022.104930.

    14. Zhao, Z.-H., Wang, Q., Xiong, X.-L., Wyman, D.A., Bai, Z., Tang, G.-J., Niu, H.-C., Luo, Y., Liu, H.-Q., Qiao, Y.-L., 2022. Stagnated eclogitic slab-related shoshonitic series volcanic rocks in West Tianshan, Xinjiang, China: Insights from Li-B-Sr-Nd-Hf-Pb isotope and trace element compositions. Lithos, 422-423, 106724,https://doi.org/10.1016/j.lithos.2022.106724.

    15. Xu, J., Xia, X.-P., Spencer, C.J., Wang, Q., Yin, C.-Q., 2022. Identification of High 18O Adakite-Like Granites in SE Tibet: Implication for Diapiric Relamination of Subducted Sediments. Geophysical Research Letters, 49, e2022GL098541, https://doi.org/10.1029/2022GL098541.

    16. Wang, J., Wang, Q.*, Zeng, J.-P., Ou, Q., Dan, W., Yang, A. Y., Chen, Y.-W., Wei, G.-J., 2022. Generation of continental alkalic mafic melts by tholeiitic melt–mush reactions: A new perspective from contrasting mafic cumulates and dikes in central Tibet. Journal of Petrology, in press, https://doi.org/10.1093/petrology/egac039.

    17. Huang, T.-Y., Wang, Q.*, Wyman, D. A., Ma, L., Tang, G.-J., Zhang, Z.-P., Dong, H., 2022. Subduction erosion revealed by Late Mesozoic magmatism in the Gangdese arc, South Tibet. Geophysical Research Letters, 49, e2021GL097360. https://doi.org/10.1029/2021GL097360.

    18. Hao, L-L., Wang, Q.*, Kerr, A., Wei, G-J., Huang, F., Zhang, M-Y., Qi, Y., Ma, L., Chen, X-F., Yang, Y.-N., 2022. Contribution of continental subduction to very light B isotope signatures in post-collisional magmas: evidence from southern Tibetan ultrapotassic rocks. Earth and Planetary Science Letters, 584, 117508. https://doi.org/10.1016/j.epsl.2022.117508.

    19. Wang, J., Wang, Q.*, Xu, C.-B., Dan, W.*, Xiao, Z., Shu, C., Wei, G., 2022. Cenozoic delamination of the southwestern Yangtze Craton owing to densification during subduction and collision. Geology, 50 (8): 912–917, https://doi.org/10.1130/G49732.1.

    20. Hu, W.-L., Wang, Q.*, Tang, G.-J., Zhang, X.-Z., Qi, Y., Wang, J., Ma, Y.-M., Yang, Z.-Y., Sun, P., Hao, L.-L., 2022. Late Early Cretaceous magmatic constraints on the timing of closure of the Bangong–Nujiang Tethyan Ocean, Central Tibet. Lithos, 416-417, 106648https://doi.org/10.1016/j.lithos.2022.106648.

    21. Tang, G.-J., Wyman, D.A., Wang, Q., Yin, J.-Y., Dan, W., 2022. Long-Distance Lateral Magma Propagation and Pamir Plateau Uplift. Geophysical Research Letters, 49, e2021GL096467https://doi.org/10.1029/2021GL096467.

    22. Zhang, X.Z., Wang, Q.*, Wyman, D., Ou, Q., Qi, Y., Gou, G.-N., Dan, W., Yang, Y.-N., 2022.  Tibetan Plateau growth linked to crustal thermal transitions since the Miocene. Geology, 50 (5): 610–614, https://doi.org/10.1130/G49534.1.

    23. Ma, Y.*, Wang, Q.*, Yang, T., Ou, Q., Zhang, X., Dan, W., Zhang, S., Wu, H., Li, H., Cao, L., Wang, J., Zou, D., Wang, H., 2022. Location of the Lhasa terrane in the Late Cretaceous and its implications for crustal deformation. Palaeogeography, Palaeoclimatology, Palaeoecology, 588, 110821, https://doi.org/10.1016/j.palaeo.2021.110821.

    24. Wang, Z.-L., Fan, J.-J., Wang, Q.*, Hu, W.-L., Wang, J., Ma, Y.-M., 2022. Campanian transformation from post-collisional to intraplate tectonic regime: Evidence from ferroan granites in the Southern Qiangtang, central Tibet. Lithos, 408-409, 106565https://doi.org/10.1016/j.lithos.2021.106565.

    25. Xu, J., Xia, X.P., Wang, Q., Spencer, C.J., Lai, C.K., Ma, J.L., Zhang, L., Cui, Z.X., Zhang, W.F., and Zhang, Y.Q., 2022. Pure sediment-derived granites in a subduction zone. GSA Bulletin, 134, 599-615, https://doi.org/10.1130/B36016.1.

    26. Yan, Q.H., Wang, H., Chi, G., Wang, Q., Hu, H., Zhou, L., Zhang, X.Y., 2022. Recognition of a 600-km-long Late Triassic rare-metal (Li–Rb–Be–Nb–Ta) pegmatite belt in the Western Kunlun orogenic belt, western China. Economic Geology, 117(1),213-236,doi:10.5382/econgeo.4858.

    27. Xu, J., Xia, X.-P., Wang, Q., Spencer, C. J., He, B., and Lai, C.-K., 2022. Low- 18O A-type granites in SW China: Evidence for the interaction between the subducted Paleotethyan slab and the Emeishan mantle plume. GSA Bulletin, 134 (1-2): 81–93, https://doi.org/10.1130/B35929.1.

    28. 周金胜, 王强. 2022. 地壳内的岩浆动力学过程及其资源与环境效应. 岩石学报, 38(5):1399-1418.

     

    2021  

    29. Tang, G.-J., Cawood, P. A., Wyman, D. A., Dan, W., Wang, Q., Yang, Y.-N. 2021. The missing magmatic arc in a long-lived ocean from the western Kunlun- Pamir Paleo-Tethys realm. Geophysical Research Letters, 48, e2021GL095192. https://doi.org/10.1029/2021GL095192.

    30. Sun, P., Wang, Q.*, Hao, L.-L.*, Dan, W., Ou, Q., Jiang, Z.-Q., and Tang, G.-J., 2021. A m lange contribution to arc magmas recorded by Nd–Hf isotopic decoupling: An example from the southern Qiangtang Block, central Tibet. Journal of Asian Earth Sciences, p. 104931, in press, https://doi.org/10.1016/j.jseaes.2021.104931.

    31. Qi, Y., Wang, Q.*, Wei, G.-J., Zhang, X.-Z., Dan, W., Hao, L.-L., and Yang, Y.-N.. 2021.  Late Eocene post-collisional magmatic rocks from the southern Qiangtang terrane record the melting of pre-collisional enriched lithospheric mantle. GSA Bulletin, 133 (11-12): 2612–2624, https://doi.org/10.1130/B35864.1.

    32. Liu, X., Wang, Q.*, Ma, L.*, Yang, J.-H., Ma, Y.-M., and Huang, T.-Y., 2021. Early Paleozoic and Late Mesozoic crustal reworking of the South China Block: Insights from Early Silurian biotite granodiorites and Late Jurassic biotite granites in the Guangzhou area of the south-east Wuyi-Yunkai orogeny. Journal of Asian Earth Sciences, 219, 104890, https://doi.org/10.1016/j.jseaes.2021.104890.

    33. Zhou, J.-S., Wang, Q.*, Xu, Y.-G., Cemp rek, J., Wang, H., Ma, J.-L., Wei, G.-J., Huang, T.-Y., Zhu, G.-H., and Zhang, L., 2021. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites. Chemical Geology, 584, 120484, https://doi.org/10.1016/j.chemgeo.2021.120484.

    34. Li, Q.-W., Nebel-Jacobsen, Y., Zhao, J.-H., Nebel, O., Richter, M., Cawood, P. A., Wang, Q.,2021. An early garnet redox-filter as an additive oxidizer in lower continental arc crust traced through Fe isotopes. Journal of Geophysical Research: Solid Earth, 126, e2020JB021217. https://doi.org/10.1029/2020JB021217

    35. Dan, W., Wang, Q., Murphy, J.B., Zhang, X.-Z., Xu, Y.-G., White, W.M., Jiang, Z.-Q., Ou, Q., Hao, L.-L., Qi, Y. 2021. Short duration of Early Permian Qiangtang-Panjal large igneous province: Implications for origin of the Neo-Tethys Ocean. Earth and Planetary Science Letters, 568, 117054, https://doi.org/10.1016/j.epsl.2021.117054.

    36. Zhou, J.-S., Wang, Q.*, Xing, C.-M., Ma, L., Hao, L.-L., Li, Q.-W., Wang, Z.-L., and Huang, T.-Y., 2021. Crystal growth of clinopyroxene in mafic alkaline magmas. Earth and Planetary Science Letters, 568, 117005, https://doi.org/10.1016/j.epsl.2021.117005.

    37. Wang, Z.-L., Fan, J.-J., Wang, Q.*, Hu, W.-L., Yang, Z.-Y., and Wang, J., 2021. Reworking of juvenile crust beneath the Bangong–Nujiang suture zone: Evidence from Late Cretaceous granite porphyries in Southern Qiangtang, Central Tibet. Lithos, 390-391, 106097, https://doi.org/10.1016/j.lithos.2021.106097.

    38. Ma, L., Wang, Q., Kerr, A.C., and Tang, G.-J., 2021. Nature of the pre-collisional lithospheric mantle in Central Tibet: Insights to Tibetan Plateau uplift. Lithos, 388-389, 106076,https://doi.org/10.1016/j.lithos.2021.106076.

    39. Ma, L., Gou, G.-N., Kerr, A.C., Wang, Q.*, Wei, G.-J., Yang, J.-H., and Shen, X.-M., 2021. B isotopes reveal Eocene m lange melting in northern Tibet during continental subduction: Lithos, 392-393, 106146,https://doi.org/10.1016/j.lithos.2021.106146.

    40. Fan, J.-J., Wang, Q.*, Li, J., Wei, G.-J., Ma, J.-L., Ma, L.*, Li, Q.-W., Jiang, Z.-Q., Zhang, L., Wang, Z.-L., and Zhang, L., 2021. Boron and molybdenum isotopic fractionation during crustal anatexis: Constraints from the Conadong leucogranites in the Himalayan Block, South Tibet. Geochimica et Cosmochimica Acta, 297, 120-142,  https://doi.org/10.1016/j.gca.2021.01.005.

    41. Liu, X., Wang, Q.*, Ma, L.*, Gou, G.-N., Ou, Q., Wang, J., 2021. Late Jurassic Maofengshan two‐mica granites in Guangzhou, South China: fractional crystallization products of metasedimentary‐rock‐derived magmas. Mineralogy and Petrology, 115, 323–341, https://doi.org/10.1007/s00710-020-00733-9.

    42. Yang, Z.-Y., Wang, Q.*, Hao, L.-L., Wyman, D. A., Ma, L., Wang, J., Qi, Y., Sun, P., and Hu, W.-L., 2021. Subduction erosion and crustal material recycling indicated by adakites in central Tibet. Geology, 49 (6), 708–712, https://doi.org/10.1130/G48486.1.

    43. Hu, W.-L., Wang, Q*, Yang, J.-H., Tang, G.-J., Ma, L., Yang, Z.-Y., Qi, Y., and Sun, P., 2020. Petrogenesis of Late Early Cretaceous high-silica granites from the Bangong–Nujiang suture zone, Central Tibet. Lithos, 105788, https://doi.org/10.1016/j.lithos.2020.105788.

    44. Wang, J., Dan, W.*, Wang, Q.*, Tang, G.J., 2021. High-Mg# adakitic rocks formed by lower-crustal magma differentiation: mineralogical and geochemical evidence from garnet-bearing diorite porphyries in central Tibet. Journal of Petrology, 62(4), egaa099, https://doi.org/10.1093/petrology/egaa099.

    45. Hao L.-L., Wang, Q*, Kerr A. C., Yang J.-H., Ma L., Qi Y., Wang J., and Ou Q. 2021. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. GSA Bulletin, 133 (7-8), 1634–1648, https://doi.org/10.1130/B35659.1.

    46. Zhang, L., Wang, Q., Ding, X., and Li, W.-C., 2021. Diverse serpentinization and associated abiotic methanogenesis within multiple types of olivine-hosted fluid inclusions in orogenic peridotite from northern Tibet. Geochimica et Cosmochimica Acta, 296, 1–17, https://doi.org/10.1016/j.gca.2020.12.016.

    47. Wang, J., Wang, Q.*, and Dan, W.*, 2021. Reply to comment by Vind et al. on “the role of clinopyroxene in amphibole fractionation of arc magmas: Evidence from mafic intrusive rocks within the Gangdese arc, southern Tibet”. Lithos, 380-381, 105721, https://doi.org/10.1016/j.lithos.2020.105721.

    48. Dan W., Wang Q., White W.M., Li X.H., Zhang X.Z., Tang G.J., Ou Q., Hao L.L., Qi Y., 2021. Passive-margin magmatism caused by enhanced slab-pull forces in central Tibet. Geology, 49 (2): 130–134, https://doi.org/10.1130/G47957.1 

    49. Qi, Y., Hawkesworth, C. J., Wang, Q*, Wyman, D. A., Li, Z.X., Dong, H., Ma, T., Chen, F., Hu, W.L., and Zhang, X.Z., 2021. Syn-collisional magmatic record of Indian steep subduction by 50 Ma. GSA Bulletin, 133 (5-6), 949–962, https://doi.org/10.1130/B35498.1.

    50. Ou, Q., Wang, Q*, Zeng, J., Yang, J., Zhang, H., Xia, X., Chen, Y. 2021. Petrogenesis and tectonic implications of Middle Triassic basalts and rhyolites in the northern Qiangtang Block, central Tibet. Journal of Asian Earth Sciences, 206, 104573, https://doi.org/10.1016/j.jseaes.2020.104573.

    51. Fan, J.J., Wang, Q.*, Li, J., Wei, G., Derek, W., Zhao, Z., Liu, Y., Ma, J., Zhang, L., Wang, Z., 2021. Molybdenum and Boron isotopic compositions of porphyry Cu mineralization-related adakitic rocks in central-eastern China: New insights into their petrogenesis and crust‐mantle interaction. Journal of Geophysics Research: Solid Earth, 125, e2020JB020474, https://doi.org/10.1029/2020JB020474.

     

    2020

    52. Yan, H.Y., Long, X.P., Li, J., Wang, Q., Wang, X.C., Wu, B., Wang, J.Y., and Gou, L.L., 2020, Miocene adakites in south Tibet: Partial melting of the thickened Lhasa juvenile mafic lower crust with the involvement of ancient Indian continental crust compositions. GSA Bulletin, 132, 1273-1290, https://doi.org/10.1130/B35239.1.

    53. Xu, Y.*, Wang, Q., Tang, G., Wang, J., Li, H., Zhou, J., Li, Q., Qi, Y., Liu, P., Ma, L., and Fan, J., 2020. The origin of arc basalts: New advances and remaining questions. SCIENCE CHINA Earth Sciences, . 63, 1969-1991,https://doi.org/10.1007/s11430-020-9675-y. (徐义刚, 王强, 唐功建, 王军, 李洪颜, 周金胜, 李奇维, 齐玥, 刘平平, 马林, 范晶晶, 2020. 弧玄武岩的成因: 进展与问题. 中国科学: 地球科学, 50(12):: 1818-1844, https://doi.org/10.1360/SSTe-2020-0032)

    54. Wang, Q*, Hao, L., Zhang, X., Zhou, J., Wang, J., Li, Q., Ma, L., Zhang, L., Qi, Y., Tang, G., Dan, W., and Fan, J., 2020. Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis. SCIENCE CHINA Earth Sciences, 63, 1992-2016, https://doi.org/10.1007/s11430-020-9678-y 王强*, 郝露露, 张修政, 周金胜, 王军, 李奇维, 马林, 张龙, 齐玥, 唐功建, 但卫, 范晶晶., 2020. 汇聚板块边缘的埃达克质岩: 成分和成因. 中国科学: 地球科学, 50(12): 1845-1873, https://doi.org/10.1360/SSTe-2020-0034

    55. Zhou, J.-S., Yang, Z.-S.*, Wang, Q*, Zheng, Y.-C., Hou, Z.-Q., Wyman, D.A., 2020. Extraction of high-silica granites from an upper crustal magma reservoir: insights from the Narusongduo magmatic system, Gangdese arc. American Mineralogist, 105, 1572-1584, DOI: https://doi.org/10.2138/am-2020-7369.

    56. Liu, X., Wang, Q*, Ma, L., Yang, J.-H., Gou, G.-N., Ou, Q., and Wang, J., 2020. Early Paleozoic intracontinental granites in the Guangzhou region of South China: Partial melting of a metasediment-dominated crustal source. Lithos, 376-377, 105763 https://doi.org/10.1016/j.lithos.2020.105763.

    57. Wang, Q.*, Tang, G., Hao, L., Wyman, D., Ma, L., Dan, W., Zhang, X., Liu, J., Huang, T., Xu, C., 2020. Ridge subduction, magmatism and metallogenesis. Science in China Earth Sciences, 63(10): 14991518, https://doi.org/10.1007/s11430-019-9619-9. (王强, 唐功建, 郝露露, DerekWYMAN, 马林, 但卫, 张修政, 刘金恒, 黄彤宇, 许传兵., 2020. 洋中脊或海岭俯冲与岩浆作用及金属成矿. 中国科学: 地球科学, 50(10): 1401 ~ 1423, doi: 10.1360/SSTe-2019-0194)

    58. Zhou, J.-S., Wang, Q*, Wyman, D. A., Zhao, Z.-H., 2020. Petrologic reconstruction of the Tieshan magma plumbing system: Implications for the genesis of magmatic-hydrothermal ore deposits within originally water-poor magmatic systems. Journal of Petrology, 61(5), egaa056, https://doi.org/10.1093/petrology/egaa056.

    59. Fan, J.-J., Li, J., Wang, Q., Zhang, L., Zhang, J., Zeng, X.-L., Ma, L., and Wang, Z.-L., 2020. High-precision molybdenum isotope analysis of low-Mo igneous rock samples by MC–ICP–MS. Chemical Geology, 545, 119648, https://doi.org/10.1016/j.chemgeo.2020.119648.

    60. Liu, X., Wang, Q. *, Ma, L. *, Yang, Z.-Y., Hu, W.-L., Ma, Y.-M., Wang, J., and Huang, T.-Y., 2020. Petrogenesis of Late Jurassic two-mica granites and associated diorites and syenite porphyries in Guangzhou, SE China. Lithos, 364-365, 105537,https://doi.org/10.1016/j.lithos.2020.105537.

    61. Li, Q.-W., Zhao, J.-H.*, Wang, Q.*, Zhang, Z.-F., An, Y.-J., and He, Y.-T., 2020. Iron isotope fractionation in hydrous basaltic magmas in deep crustal hot zones. Geochimica et Cosmochimica Acta, 279, 29-44, https://doi.org/10.1016/j.gca.2020.03.032.

    62. Qi, Y., Wang, Q.*, Zhu, Y.-T., Shi, L.-C., and Yang, Y.-N., 2020. Miocene olivine leucitites in the Hoh Xil Basin, northern Tibet: implications for intracontinental lithosphere melting and surface uplift of the Tibetan Plateau. Journal of Petrology, 61(2), egaa026, https://doi.org/10.1093/petrology/egaa026.

    63. Tang, G.-J., Wang, Q., Wyman, D.A., Dan, W., Ma, L., Zhang, H.-X., and Zhao, Z.-H., 2020. Petrogenesis of the Ulungur Intrusive Complex, NW China, and Implications for Crustal Generation and Reworking in Accretionary Orogens. Journal of Petrology, 61(2), egaa018, https://doi.org/10.1093/petrology/egaa018.

    64. Sun, P., Dan, W., Wang, Q.*, Tang, G.-J.*, Ou, Q., Hao, L.-L., and Jiang, Z.-Q., 2020. Zircon U–Pb geochronology and Sr–Nd–Hf–O isotope geochemistry of Late Jurassic granodiorites in the southern Qiangtang block, Tibet: Remelting of ancient mafic lower crust in an arc setting? Journal of Asian Earth Sciences, 192, 104235, https://doi.org/10.1016/j.jseaes.2020.104235.

    65. Liu, X., Wang, Q.*, Ma, L.*, Wyman, D.A., Zhao, Z.-H., Yang, J.-H., Zi, F., Tang, G.-J., Dan, W., and Zhou, J.-S. 2020. Petrogenesis of Late Jurassic Pb–Zn mineralized high 18O granodiorites in the western Nanling Range, South China. Journal of Asian Earth Sciences, 192, 104236, https://doi.org/10.1016/j.jseaes.2020.104236.

    66. Dan, W., Wang, Q., Zhang, X.-Z., and Tang, G.-J., 2020. Early Paleozoic S-type granites as the basement of Southern Qiantang Terrane, Tibet. Lithos, 356-357, 105395,https://doi.org/10.1016/j.lithos.2020.105395

    67. Fan, J.-J., Tang, G.-J.*, Wei, G.-J., Wang, H., Xu, Y.-G., Wang, Q.*, Zhou, J.-S., Zhang, Z.-Y., Huang, T.-Y., and Wang, Z.-L., 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet. Lithos, 352-353, 105236,https://doi.org/10.1016/j.lithos.2019.105236.

    68. Ou, Q., Wang, Q.*, Zhang, C., Zhang, H.-X.*, Hao, L.-L., Yang, J.-H., Lai, J.-Q., Dan, W., Jiang, Z.-Q., Xia, X.-P., 2020. Petrogenesis of late Early Oligocene trachytes in central Qiangtang Block, Tibetan Plateau: crustal melting during lithospheric delamination? International Geology Review, 62, 225-242, DOI: 10.1080/00206814.2019.1597391.

    69. Zhou, J.-S., Yang, Z.-S., Hou, Z.-Q., Wang, Q., 2020. Amphibole-rich cumulate xenoliths in the Zhazhalong intrusive suite, Gangdese arc: Implications for the role of amphibole fractionation during magma evolution. American Mineralogist 105, 262-375. https://doi.org/10.2138/am-2020-7199.

     

    2019  

    70. Yang, Z.-Y., Wang, Q.*, Yang, J.-H., Dan, W., Zhang, X.-Z., Ma, L., Qi, Y., Wang, J., and Sun, P. 2019. Petrogenesis of Early Cretaceous granites and associated microgranular enclaves in the Xiabie Co area, central Tibet: Crust-derived magma mixing and melt extraction. Lithos, 350-351:105199~105220, https://doi.org/10.1016/j.lithos.2019.105199.

    71. Tang, G.-J., Wang, Q., Wyman, D.A., and Dan, W. 2019. Crustal maturation through chemical weathering and crustal recycling revealed by Hf–O–B isotopes. Earth and Planetary Science Letters, 524: 115709~115718, https://doi.org/10.1016/j.epsl.2019.115709.

    72. Ma, L.*, Kerr, A.C., Wang, Q.*, Jiang, Z.-Q., Tang, G.-J., Yang, J.-H., Xia, X.-P., Hu, W.-L., Yang, Z.-Y., and Sun, P. 2019. Nature and Evolution of Crust in Southern Lhasa, Tibet: Transformation From Microcontinent to Juvenile Terrane. Journal of Geophysical Research: Solid Earth, 124: 6452-6474 https://doi.org/10.1029/2018JB017106.

    73. Wang, Z., Li, J., Wei, G., Deng, W., Chen, X., Zeng, T., Wang, X., Ma, J., Zhang, L., Tu, X., Wang, Q., and McCulloch, M. 2019. Biologically controlled Mo isotope fractionation in coral reef systems. Geochimica et Cosmochimica Acta, 262, 128-142, https://doi.org/10.1016/j.gca.2019.07.037.

    74. Hao, L.-L., Wang, Q.*, Wyman, D.A., Yang, J.-H., Huang, F., and Ma, L. 2019. Crust-mantle mixing and crustal reworking of southern Tibet during Indian continental subduction: Evidence from Miocene high-silica potassic rocks in Central Lhasa block. Lithos, 342-343: 407-419, https://doi.org/10.1016/j.lithos.2019.05.035.

    75. Hu, W.-L., Wang, Q.*, Yang, J.-H., Zhang, C., Tang, G.-J., Ma, L., Qi, Y., Yang, Z.-Y., and Sun, P. 2019. Late early Cretaceous peraluminous biotite granites along the Bangong–Nujiang suture zone, Central Tibet: Products derived by partial melting of metasedimentary rocks? Lithos, 344-345: 147-158, https://doi.org/10.1016/j.lithos.2019.06.005.

    76. Wang, J., Wang, Q.*, Dan*, W., Yang, J.-H., Yang, Z.-Y., Sun, P., Qi, Y., Hu, W.-L. 2019. The role of clinopyroxene in amphibole fractionation of arc magmas: Evidence from mafic intrusive rocks within the Gangdese arc, southern Tibet. Lithos, 338–339, 174-188, https://doi.org/10.1016/j.lithos.2019.04.013.

    77. Wu, H., Chen,J.W., Wang, Q., Yu, Y.P. 2019. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in central Tibet. American Journal of Science, 319:105-121, doi: 10.2475/02.2019.02.

    78. Ou, Q., Wang, Q.*, Wyman, D. A., Zhang, C., Hao, L.-L., Dan, W., Jiang, Z.Q., Wu, F.-Y., Yang, J.-H., Zhang, H.-X., Xia, X.-P., Ma, L., Long, X.-P, Li, J. 2019. Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. Geological Society of American Bulletin, 2019, 131(7/8): 1385–1408, doi.org/10.1130/B31911.1.

    79. Hao, L.-L., Wang, Q.*, Zhang, C., Ou, Q., Yang, J.-H., Dan, W., Jiang, Z.-Q. 2019. Oceanic plateau subductionduring closure of Bangong-Nujiang Tethys: Insights from Central Tibetan volcanic rocks. Geological Society of American Bulletin, 131(5/6), 864–880, doi: 10.1130/B32045.1.

    80. Ma, Y.*, Wang, Q.*, Wang, J., Yang, T., Tan, X., Dan, W., Zhang,X.Z., Ma, L., Wang, Z.L.,  Hu,W.L., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W. 2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic. Geophysical Research Letters, 46, 689–697. https://doi.org/10.1029/2018GL080964.

    81. Yan, H., Long, X., Li, J., Wang, Q., Zhao, B., Shu, C., Gou, L., and Zuo, R. 2019. Arc andesitic rocks derived from partial melts of m lange diapir in subduction zones: evidence from whole-rock geochemistry and Sr-Nd-Mo isotopes of the Paleogene Linzizong volcanic succession in southern Tibet. Journal of Geophysical Research: Solid Earth, 124, 456–475. https://doi.org/10.1029/2018JB016545.

    82. Hao, L.-L., Wang, Q.*, Wyman, D. A., Ma, L., Wang, J., Xia, X.-P., and Ou, Q. 2019. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan orogen. Geology, 47 (2): 187–190,https://doi.org/10.1130/G45526.1.

    83. Dan, W., Wang, Q., Li, X.-H., Tang, G.-J., Zhang, C., Zhang, X.-Z., and Wang, J. 2019. Low 18O magmas in the carboniferous intra-oceanic arc, central Tibet: Implications for felsic magma generation and oceanic arc accretion. Lithos, 326-327, 28-38.

    84. Yang, Z.-Y., Wang, Q.*, Zhang, C., Yang, J.-H., Ma, L., Wang, J., Sun, P., and Qi, Y. 2019. Cretaceous (~100?Ma) high-silica granites in the Gajin area, Central Tibet: Petrogenesis and implications for collision between the Lhasa and Qiangtang Terranes. Lithos, 324-325, 402-417.

     

    2018

    85. Ma, Y., Yang, T., Bian, W., Jin, J., Wang, Q., Zhang, S., Wu, H., Li, H., Cao, L. 2018. A stable southern margin of Asia during the Cretaceous: Paleomagnetic constraints on the Lhasa-Qiangtang collision and the maximum width of the Neo-Tethys. Tectonics, 37, 3853–3876, DOI: 10.1029/2018TC005143.

    86. Shen, X. M., Zhang,H. X., Wang, Q., Saha, A., Ma, L. 2018. Zircon U-Pb geochronology and geochemistry of Devonian plagiogranites in the Kuerti area of southern Chinese Altay, northwest China: Petrogenesis and tectonic evolution of late Paleozoic ophiolites. Geological Journal, 53(5): 1886-1905.

    87. Wang, J., Wang, Q.*, Zhang, C., Dan, W.*, Qi, Y., Zhang, X.-Z., Xia, X.-P. 2018. Late Permian bimodal volcanic rocks in the northern Qiangtang Terrane, central Tibet: evidence for interaction between the Emeishan plume and the Paleo-Tethyan subduction system. Journal of Geophysical Research: Solid Earth, 123, 123, 6540–6561, DOI:10.1029/2018JB015568.

    88. Yang, Q., Xia, X., Zhang, W., Zhang, Y., Xiong, B., Xu, Y., Wang, Q., and Wei, G. 2018. An evaluation of precision and accuracy of SIMS oxygen isotope analysis. Solid Earth Sciences, 3, 81-86.

    89. Hao, L.L., Wang, Q.*, Wyman, D. A., Qi, Y., Ma, L., Huang, F., Zhang, L., Xia, X. P., Ou, Q. 2018. First identification of mafic igneous enclaves in Miocene lavas of southern Tibet with implications for Indian continental subductionGeophysical Research Letters, 45, 8205–8213, doi: 10.1029/2018GL079061.

    90. Yang, Z. Y., Wang, Q.*, Zhang, C., Dan, W., Zhang, X. Z., Qi, Y., Xia, X.-P., Zhao, Z. H. 2018. Rare earth element tetrad effect and negative Ce anomalies of the granite porphyries in southern Qiangtang Terrane, central Tibet: New insights into the genesis of highly evolved granites. Lithos, 312–313, 258–273. doi: 10.1016/j.lithos.2018.04.018.

    91. Dan, W., Wang, Q., Zhang, X.-Z., Zhang, C., Tang, G.-J., Wang, J., Ou, Q., Hao, L.-L., and Qi, Y., 2018, Magmatic record of Late Devonian arc-continent collision in the northern Qiangtang, Tibet: Implications for the early evolution of East Paleo-Tethys Ocean. Lithos, 308-309, 104-117.

    92. Qi, Y., Gou, G.-N., Wang, Q.*, Wyman, D.A., Jiang, Z.-Q., Li, Q.-L., and Zhang, L., 2018, Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene (~64Ma) pseudoleucite phonolitic rocks in central Lhasa terrane. Lithos, 302-303, 178-188, DOI: 10.1016/j.lithos.2017.12.021.

    93. Dan, W., Wang, Q.,White, W. M., Li, X.-H., Zhang, X.-Z., Jiang, Z.-Q., Ou, Q., Hao, L.-L., Qi, Y. 2017. Triassic passive margin magmatism inCentral Tibet caused by slab roll-back. (In review).

    94. Wang, J., Gou, G.-N., Wang, Q.*, Zhang, C., Dan, W. *, Wyman, D.A., and Zhang, X.-Z., 2018, Petrogenesis of the Late Triassic diorites in the Hoh Xil area, northern Tibet: Insights into the origin of the high-Mg# andesitic signature of continental crust. Lithos, 300-301, 348-360, DOI: 10.1016/j.lithos.2017.12.007.

    95. Dan, W., Wang, Q., White, W.M., Zhang, X.-Z., Tang, G.-J., Jiang, Z.-Q., Hao, L.-L., and Ou, Q. 2018. Rapid formation of eclogites during a nearly closed ocean: Revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau. Chemical Geology, 477, 112-122., DOI: 10.1016/j.chemgeo.2017.12.012.

    96. Ma, L.*, Kerr, A.C., Wang, Q.*, Jiang, Z.Q., Hu, W.L. 2018. Early Cretaceous (~140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: products of crust-mantle interaction during lithospheric extension. Lithos, 300-301, 212-226, DOI: 10.1016/j.lithos.2017.11.023

    97. Wu, H., Qiangba, Z., Li, C., Wang, Q., Gesang, W., Ciren, O., and Basang, D. 2018. Geochronology and Geochemistry of Early Cretaceous Granitic Rocks in the Dongqiao Area, Central Tibet: Implications for Magmatic Origin and Geological Evolution. The Journal of Geology, 126, 249-260, DOI: 10.1086/695702.

     

    2017

    98. Ma, L.*, Wang, Q.*, Kerr, A.C., Yang, J.-H., Xia, X.-P., Ou, Q., Yang, Z.-Y., Sun, P. 2017. Paleocene (c. 62 Ma) Leucogranites in Southern Lhasa, Tibet: Products of Syn-collisional Crustal Anatexis during Slab Roll-back? Journal of Petrology, 58(11), 2089–2114, doi: 10.1093/petrology/egy001.

    99. Ma, Y., Yang, T., Bian, W., Jin, J., Wang, Q., Zhang, S., Wu, H., Li, H., Cao, L., Yuan, H., and Ding, J. 2017. Paleomagnetic and Geochronologic Results of Latest Cretaceous Lava Flows From the Lhasa Terrane and Their Tectonic Implications. Journal of Geophysical Research: Solid Earth, 122, 8786-8809, DOI: 10.1002/2017JB014743.

    100. Zhang, X.-Z., Wang, Q.*, Dong, Y.-S., Zhang, C., Li, Q.-Y., Xia, X.-P., and Xu, W. 2017. High-Pressure Granulite Facies Overprinting During the Exhumation of Eclogites in the Bangong-Nujiang Suture Zone, Central Tibet: Link to Flat-Slab Subduction. Tectonics, 36, 2918-2935, doi:10.1002/2017TC004774.

    101. Tang, G.-J., Cawood, P. A., Wyman, D. A., Wang, Q., & Zhao, Z.-H. 2017. Evolving mantle sources in postcollisional early Permian-Triassic magmatic rocks in the heart of Tianshan Orogen (western China). Geochemistry, Geophysics, Geosystems, 18, 4110–4122. doi:10.1002/2017GC006977.

    102. Tang, G.-J., Q. Wang, C. Zhang, D. A. Wyman, W. Dan, X.-P. Xia, H.-Y. Chen, and Z.-H. Zhao. 2017. Sr-Nd-Hf-O isotope geochemistry of the Ertaibei pluton, East Junggar, NW China: Implications for development of a crustal-scale granitoid pluton and crustal growth, Geochemistry Geophysics Geosystems, 18, 3340–3358, doi:10.1002/2017GC006998.

    103. Huang, C.-C., Guo, H.-F., Li, J., Wang, Q.*, Zhang, C., Wyman, D., and Tang, G.-J. 2017. Re–Os isotope geochronology of the Shangbao pyrite–flourite deposit in southeastern Hunan, South China: Evidence for multiple mineralization events and the role of crust–mantle interaction in polymetallic deposits. Solid Earth Sciences, 2, 109-122, doi: 10.1016/j.sesci.04.001

    104. Chen, B., Long, X., Wilde, S.A., Yuan, C., Wang, Q., Xia, X., and Zhang, Z. 2017. Delamination of lithospheric mantle evidenced by Cenozoic potassic rocks in Yunnan, SW China: A contribution to uplift of the Eastern Tibetan Plateau. Lithos, 284-285, 709-729, DOI: 10.1016/j.lithos.2017.05.019.

    105. Gou, G.-N., Wang, Q.*, Wyman, D.A., Xia, X.-P., Wei, G.-J., and Guo, H.-F. 2017. In situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet: Evidence for melting of continental crust and sediment recycling. Solid Earth Sciences, 2, 43-54, doi: 10.1016/j.sesci.2017.03.003.

    106. Tang, G.-J., Wang, Q., Wyman, D.A., Chung, S.-L., Zhao, Z.-H. 2017. Genesis of pristine adakitic magmas by lower crustal melting: A perspective from amphibole composition. Journal Geophysical Research-Solid Earth, 122, 1934–1948, doi:10.1002/2016JB013678.

    107. Tang, G.-J., Chung, S.-L., Hawkesworth, C.J., Cawood, P.A., Wang, Q., Wyman, D.A., Xu, Y.-G., Zhao, Z.-H. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters 464, 142–154, doi: 10.1016/j.epsl.2017.02.022.

    108. Ou, Q., Wang, Q.*, Wyman, D. A., Zhang, H.-X.*, Yang, J.-H., Zeng, J.-P., Hao, L.-L., Chen, Y.-W., Liang, H., and Qi, Y. 2017. Eocene adakitic porphyries in the central-northern Qiangtang Block, centralTibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau. Journal of Geophysical Research—Solid Earth, 122, 1025–1053, doi:10.1002/2016JB013259.

    109. He, Y., Wu, H., Ke, S., Liu, S.-A., and Wang, Q. 2017. Iron isotopic compositions of adakitic and non-adakitic granitic magmas: Magma compositional control and subtle residual garnet effect. Geochimica et Cosmochimica Acta, 203, 89-102.

    110. Zhang, X.-Z.*, Dong, Y.-S., Wang, Q.*, Dan , W., Zhang, C., Xu, W., Huang, M.-L. 2017. Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet-staurolite-muscovite schists in central Qiangtang, Tibet. Geochemistry Geophysics Geosystems, 18, 266-279, DOI:10.1002/2016GC006576.

    111. Ma, L., Wang, Q.*, Li, Z.-X., Wyman, D. A., Yang, J.-H., Jiang, Z.-Q., Liu, Y.-S., Gou, G.-N., Guo, H.-F. 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (~ 35 Ma): insights from the Quguosha gabbros in southern Lhasa block. Gondwana Research, 41, 77–92, http://dx.doi.org/10.1016/j.gr.2016.02.005. 

     

    2016

    112. Wang, Q.*, Hawkesworth, C. J. *, Wyman, D., Chung, S.-L., Wu, F.-Y. Li, X.-H., Li, Z.-X., Gou, G.-N., Zhang, X.-Z., Tang, G.-J., Dan, W., Ma, L., Dong, Y.-H. 2016. Pliocene–Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 7:11888, doi: 10.1038/ncomms11888.

    113. Hao, L.-L., Wang, Q.*, Wyman, D. A., Ou, Q., Dan, W., Jiang, Z.-Q., Yang, J.-H., Long, X.-P., Li, J. 2016. Partial melting of the m lange for the growth of andesitic crust indicated by the Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet. Geochemistry Geophysics Geosystems, 17, doi:10.1002/2016GC006248. 

    114. Hao, L.-L., Wang, Q.*, Wyman, D. A., Ou, Q., Dan, W., Jiang, Z.-Q., Wu, F.-Y., Yang, J.-H., Long, X.-P., and Li, J. 2016. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos, 245, 223-242, doi:10.1016/j.lithos.2015.1009.1015.

    115. Dan, W.*, Li, X.-H., Wang, Q.*, Wang, X.-C., Wyman, D. A., and Liu, Y. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U–Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry. Gondwana Research, 32,105-121,doi:10.1016/j.gr.2015.1002.1011. 

    116. Zhang, X. Z.*, Dong, Y. S., Wang, Q.*, Dan, W., Zhang, C., Deng, M.R., Xu, W., Xia, X.P., Zeng, J.P. and Liang, H. 2016. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet. Tectonics, 35(7), 1670-1686.

    117. Yan, H., Long, X., Wang, X.-C., Li, J., Wang, Q., Yuan, C., and Sun, M. 2016. Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Ando area, central Tibet: Evidence for a slab roll-back of the Bangong-Nujiang Ocean. Lithos, 264, 315-328.

     

    2015

    118. Ma, L., Wang, Q.*, Wyman, D. A., Jiang, Z.-Q., Wu, F.-Y., Li, X.-H., Yang, J.-H., Gou, G.-N., Guo, H.-F. 2015. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases. Journal of Geophysical Research, 120, 6159–6181,doi: 10.1002/2015JB011966.

    119. Dan, W. *, Wang, Q.*, Wang, X.-C., Liu, Y., Wyman, D. A., Liu, Y.-S. 2015. Overlapping Sr–Nd–Hf–O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China: Evidence for crust–mantle interaction and implications for the generation of silicic igneous provinces. Lithos, 230,133–145.

    120. Jiang, Z., Wang, Q.*, Wyman, D., Shi, X., Yang, J.-H., Ma, L., and Gou, G. 2015. Zircon U–Pb geochronology and geochemistry of Late Cretaceous–Early Eocene granodiorites in the southern Gangdese Batholith of Tibet: Petrogenesis and implications for geodynamics and Cu Au Mo mineralization. International Geology Review, 57(3), 373–392, DOI: 10.1080/00206814.2015.1009503.

    121. Li, J., Wang, X.-C., Xu, J.-F., Xu, Y.-G., Tang, G.-J., Wang., Q. 2015. Disequilibrium-induced initial Os isotopic heterogeneity in gramaliquots of single basaltic rock powders: Implications for dating and source tracing. Chemical Geology 406, 10–17.

    122. Long, X., Wilde, S. A., Wang, Q., Yuan, C., Wang, X.-C., Li, J., Jiang, Z., and Dan, W. 2015. Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Earth and Planetary Science Letters, 414(0), 30-44.

     

    2014

    123. Dan, W.*, Li, X.-H., Wang, Q.*, Wang, X.-C., Liu, Y., and Wyman, D. A. 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off. Precambrian Research, 254, 59–72, DOI: 10.1016/j.precamres.2014.1007.1024.

    124. Guan, Y., Yuan, C., Sun, M., Wilde, S., Long, X., Huang, X., and Wang, Q. 2014. I-type Granitoids in the Eastern Yangtze Block: Implications for the Early Paleozoic Intracontinental Orogeny in South China. Lithos, 206-207, 34-51, DOI: 10.1016/j.lithos.2014.1007.1016.

    125. Shen, X.-M., Zhang, H.-X., Wang, Q., Ma, L., and Yang, Y.-H. 2014. Early Silurian (~440Ma) adakitic, andesitic and Nb-enriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): Slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 206-207: 234-251, DOI: 10.1016/j.lithos.2014.1007.1024.

    126. Tang, G.-J., Chung, S.-L., Wang, Q., Wyman, D. A., Dan, W., Chen, H.-Y., and Zhao, Z.-H. 2014. Petrogenesis of a Late Carboniferous mafic dike–granitoid association in the western Tianshan: Response to the geodynamics of oceanic subduction. Lithos 202–203, 85-99.

    127. Jiang, Z.Q., Wang, Q.*, Wyman, D. A., Li, Z. X., Yang, J. H., Shi, X.B., Ma, L., Tang, G. J., Gou, G. N., Jia, X. H., Guo, H. F. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous–Early Oligocene (~ 91–30 Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese. Lithos, 196-197, 213-231, doi: 10.1016/j.lithos.2014.03.001

    128. Ma, L., Wang, B. D., Jiang, Z. Q., Wang, Q.*, Li, Z. X., Wyman, D. A., Zhao, S. R., Yang, J. H., Gou, G. N., Guo, H. F. 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 196-197, 321-338, doi: 10.1016/j.lithos.2014.02.011.

    129. Dan, W. *, Li, X. H., Wang, Q.*, Tang, G. J., Liu, Y. 2014. An Early Permian (ca. 280 Ma) silicic igneous province in the Alxa Block, NW China: A magmatic flare-up triggered by a mantle-plume? Lithos, 204, 144-158, doi: 10.1016/j.lithos.2014.01.018.

    130. Dan, W., Li, X.H., Wang, Q., Wang, X.C., Liu, Y. 2014. NEOPROTEROZOIC S-TYPE GRANITES IN THE ALXA BLOCK,WESTERNMOST NORTH CHINA AND TECTONIC IMPLICATIONS:IN SITU ZIRCON U-Pb-Hf-O ISOTOPIC AND GEOCHEMICAL CONSTRAINTS. American Journal of Science, 314, 110-153, DOI 10.2475/01.2014.04.

     

    2013

    131. Huang Z.Y., Long X.P., Kr?ner A., Yuan C., Wang Q., Sun M., Zhao G.C., Wang Y.J. 2013. Geochemistry, zircon U–Pb ages and Lu–Hf isotopes of early Paleozoic plutons in the northwestern Chinese Tianshan: Petrogenesis and geological implications. Lithos, 182-183, 48-66.

    132. Tang, G.J., Wang, Q.*, Wyman, D.A., Sun, M., Zhao, Z.H., Jiang, Z.Q. 2013. Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions. Journal of Asian Earth Science, 74, 113-128.

    133. Ma, L., Wang, Q.*, Wyman, D.A., Li, Z.X., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F. 2013. Late Cretaceous (100-89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 175–176, 315-332,doi: 10.1016/j.lithos.2013.04.006.

    134. Ma, L., Wang, Q.*, Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F., 2013. The early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up” in southern Lhasa (Tibet). Lithos, 172–173, 17–30, 10.1016/j.lithos.2013.03.007.

    135. Ma, L., Wang, Q.*, Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.L., Gou, G.N., Guo, H.F., 2013. Late Cretaceous crustal growth of southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from the Zhengga diorite-gabbro suites in the Gangdese area. Chemical Geology, 349–350, 54–70, 10.1016/j.chemgeo.2013.04.005.

     

    2012

    136. Ali, K. A., Moghazi, A.K. M., Maurice, A. E., Omar, S. A., Wang, Q., Wilde, S. A., Moussa, E.M., Manton, W. I., Stern, R.J. 2012. Composition, age, and origin of the ~620 Ma Humr Akarim and Humrat Mukbid A-type granites: no evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt. International Journal of Earth Sciences, 101(7), 1705-1722, doi:10.1007/s00531-012-0759-2.

    137. Wang Q., Chung S.L., Li X.H., Wyman D., Li Z.X., Sun W.D., Qiu H.N., Liu Y.S., Zhu Y.T. 2012. Crustal melting and flow beneath northern Tibet: Evidence from Mid-Miocene to Quaternary strongly peraluminous rhyolites in southern Kunlun Range. Journal of Petrology, 53(12), 2523-2566, doi: 10.1093/petrology/egs058.

    138. Tang, G.J., Wang Q.*, Wyman, D.A., Li, Z.X., Xu, Y.G., Zhao, Z.H. 2012. Metasomatized lithosphere-asthenosphere interaction during slab roll-back: Evidence from Late Carboniferous gabbros in the Luotuogou area, Central Tianshan. Lithos, 155, 67–80,doi: 10.1016/j.lithos.2012.08.015.

    139. Wang Q., Li X.H ., Jia X.H ., Wyman D.A., Tang G.J., Li Z.X., Yang Y.H., Jiang Z.Q., Ma L, Gou G.N. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium–rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): partial melting of lower crust and mantle, and magma hybridization. Chemical Geology, 328, 222–243, doi:10.1016/j.chemgeo.2012.04.029.

    140. Jiang Z.Q., Wang Q.*, Li Z.X., Wyman D.A., Tang G.J., Jia X.H., Yang Y.H. 2012. Late Cretaceous (ca. 90 Ma) adakitic intrusive rocks in the Kelu area, Gangdese belt (southern Tibet): Slab melting and implications for Cu-Au mineralization. Journal of Asian Earth Science, 53: 67-81, doi:10.1016/j.jseaes.2012.02.010.

    141. Tang G..J., Wang Q.*, Wyman D.A., Li Z.-X., Zhao Z.-H., Yang Y.-H. 2012. Late Carboniferous high Nd(t)- Hf(t) granitoids, enclaves and dikes in western Junggar, NW China: ridge-subduction-related magmatism and crustal growth. Lithos 140-141: 86–102, doi:10.1016/j.lithos.2012.01.025

    142. Tang G..J., Wyman D.A., Wang Q.*, Li J., Li Z.X., Zhao ZH., Sun W.D. 2012. Asthenosphere–lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth and Planetary Science Letters 329-330, 84–96, doi:10.1016/j.epsl.2012.02.009.

    143. Tang, G.J., Wang Q.*, Wyman D.A., Li Z.X., Xu Y.G., and Zhao Z.H. 2012. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granotoids in the western Junggar region, NW China. Lithos 128-131, 73-83, dio:10.1016/j.lithos.2011.11.003.

     

    2011

    144. Wang Q., Li Z.X., Chung S.L., Wyman D. A., Sun Y.L., Zhao Z.H., Zhu Y.T., Qiu H.N. 2011. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos 126(1-2), 54-67, doi: 10.1016/j.lithos.2011.06.002

    145. Shen X.M., Zhang H.X., Wang Q., Wyman D.A., Yang Y.H. 2011. Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of “A2-type” granites. Journal of Asian Earth Sciences 42(5), 986-1007, doi:10.1016/j.jseaes.2010.10.004.

     

    2010

    146. Wang Q., Wyman D.A., Li Z.X., Sun W.D., Chung S.L., Vasconcelos P.M., Zhang Q.Y., Dong H., YuY.S., Pearson N., Qiu H.N., Zhu T.X., Feng X.T. 2010. Eocene north-south trending dikes in central Tibet: New constraints on the timing of east-west extension with implications for early plateau uplift?Earth and Planetary Science Letters, 298: 205–216, doi:10.1016/j.epsl.2010.07.046.

    147. Wang Q., Wyman D.A., Li Z.X., Bao Z.W., Zhao Z.H., Wang Y.X., Jian P., Yang Y.H., Chen L.L. 2010. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of supercontinent Rodinia. Precambrian Research, 178:185–208, doi:10.1016/j.precamres.2010.02.004.

    148. Tang G.J., Wang Q.*, Wyman D.A., Li Z.X., Zhao Z.H., Jia X.H., Jiang Z.Q. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology, 277: 281–300, doi:10.1016/j.chemgeo.2010.08.012. 

    149. Tang G.J., Wang Q.*, Wyman D.A., Sun M., Li Z.X., Zhao Z.H., Sun W.D., Jia X.H., Jiang Z.Q. 2010. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China): evidence for a tectonic transition from arc to post-collisional setting. Lithos, 119: 393–411, doi:10.1016/j.lithos.2010.07.010.

     

    2009

    150. Zhao ZH, Wang Q, Xiong XL, Niu HC, Zhang HX, Qiao YL. 2009. Magnesian andesites in north Xinjiang, China. International Journal of Earth Science, 98, 1325–1340.

    151. Zhao ZH, Xiong XL, Wang Q, Bai ZH, Qiao YL, 2009. Late Paleozoic underplating in North Xinjiang: Evidence from shoshonites and adakites. Gondwana Research, 16, 216-226.

     

    2008

    152. Wang, Q., Wyman, D.A., Xu, J.F., Dong, Y.H., Vasconcelos, P. M., Pearson, N., Wan, Y.S., Dong, H., Li, C.F., Yu, Y.S., Zhu, T.X., Feng, X.T., Zhang, Q.Y., Zi, F., Chu, ZY. 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272, 158-171, doi: 10.1016/j.epsl.2008.04.034.

    153. Wang Q., Wyman A., Xu J.F., Wan Y.S., Li C.F., Zi F., Jiang Z.Q., Qiu H.N., Chu Z.Y., Zhao Z.H., Dong Y.H. 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155, 473–490. DOI 10.1007/s00410-007-0253-1.

    154. Bao ZW, Wang Q, Bai GD, Zhao ZH, Song YW, Liu XM. 2008. Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in East Qinling orogen and its geodynamic implications. Chinese Science Bulletin, 53 (13), 2050-2061

    155. Zhao, Z.H., Xiong, X.L., Wang, Q., Wyman, D.A., Bao, Z.W., Bai, Z.H., and Qiao, Y.L. 2008. Underplating-related adakites in Xinjiang Tianshan, China. Lithos, 102(1-2): 374-391.

     

    2007

    156. Wang Q., Wyman A., Xu J. F., Jian P., Zhao Z. H., Li C.F., Xu W., Ma J. L., He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10), 2609-2636. 

    157. Wang Q., Wyman D.A., Zhao Z.H., Xu J.F., Bai Z.H., Xiong X.L., Dai T.M., Li C.F., Chu Z.Y. 2007. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implication for Phanerozoic crustal growth of Central Asia Orogenic Belt. Chemical Geology, 236(1-2), 42-64. 

    158. Wang Q., Wyman D. A., Xu J. F., Zhao Z. H., Jian P., Zi F. 2007. Partial melting of thickened or delaminated lower crust in the middle of eastern China: implications for Cu-Au mineralization. The Journal of Geology, 115(2), 149-161. 

     

    2006

    159. Wang Q., Wyman D. A., Xu J. F., Zhao Z. H., Jian P., Xiong X. L., Bao Z.W., Li C. F., Bai Z. H. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4), 424-446. 

    160. Wang Q., Xu J. F., Jian P., Bao Z. W., Zhao Z. H., Li C. F., Xiong X. L., Ma J. L. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1), 119-144. 

     

    2005

    161. Wang Q., Li J. W., Jian P., Zhao Z. H., Xiong X. L., Bao Z. W., Xu J. F., Li C. F., Ma J. L. 2005. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension. Earth and Planetary Science Letters, 230(3-4), 339-354. 

    162. Wang Q., McDermott F., Xu J. F., Bellon H., Zhu Y. T. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower crustal melting in an intracontinental setting. Geology, 33(6), 465-468. 

     

    2004

    163. Wang Q., Zhao Z. H., Bao Z. W., Xu J. F., Liu W., Li C. F., Bai Z. H., and Xiong X. L. 2004. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper-molybdenum mineralization in southeast Hubei, east China. Resource Geology, 54(2), 137-152. 

    164. Wang Q., Xu J. F., Zhao Z. H., Bao Z. W., Xu W., and Xiong X. L. 2004. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Geochemical Journal, 38(5), 417-434. 

    165. Xu Y. G., Huang X. L., Ma J. L., Wang Y. B., Iizuka Y., Xu J. F., Wang Q., Wu X. Y. 2004. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology, 147, 750–767.

    166. Zhao, Z H, Xiong X L, Wang Q, Bai Z H, Xu J F, and Qiao Y L. 2004. The Association of Late Paleozoic Adakitic Rocks and Shoshonitic Volcanic Rocks in Western Tianshan, China. Acta Geologica Sinica, 78(1), 68-72.

     

    2003

    167. Wang Q., Zhao Z. H., Bai Z. H., Bao Z. W., Xu J. F., Xiong X. L., Mei H. J., Wang Y. X. 2003. Carboniferous adakites and Nb-enriched arc basaltic rocks association in the Alataw Mountains, north Xinjiang: interactions between slab melt and mantle peridotite and implications for crustal growth. Chinese Science Bulletin, 48 (19), 2108-2115.

    168. Wang Q., Zhao Z. H., Xu J. F., Li X. H., Bao Z. W., Xiong X. L., Liu Y. M. 2003. Petrologenesis and metallogenesis of the Yanshanian adakite-like rocks in the Eastern Yangtze Block, Science in China, Series D, 2003, 46(Supp), 164-176

    169. Wang Q., Xu J. F., Zhao Z. H., Xiong X. L., Bao Z. W. 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling Area, Anhui Province, China and constraint to Geodynamics process. Science in China, Series D, 46(8) , 801-815.

    170. Zhao Z. H., Xiong X. L., Wang Q., Bao Z. W. 2003. Alkaline-rich igneous rocks and related large-super large gold-copper mineralization in China. Science in China, Series D, 46(Supp) , 1-13.

    171. Xiong X. L., Li X. H., Xu J. F., Li W. X., Zhao Z. H., Wang Q. and Chen X. M. 2003. Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: The Late Cretaceous Zhantang andesites in the Huichang Basin, SE China. Geochemical Journal, 37: 233-252.

    172. Liu Y. M., Xu J. F., Dai T. M., Li X. H., Deng X. G., Wang Q. 2003. 40Ar/39Ar isotopic ages of Qianlishan granite and their geologic implications. Science in China, Series D, 2003, 46(Supp), 50-59.

     

    2002

    173. Xu J. F., Shinjio R., Defant M. J., Wang Q., Rapp R. P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology, 30, 1111-1114.  

    174. Defant M. J., Xu J. F., Kepezhinskas P., Wang Q., Zhang Q., Xiao L. 2002. Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 18(2), 129-142.

    175. Zhao Z. H., Xiong X. L., Han X. D., Wang Y. X., Wang Q., Bao Z. W. 2002. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe granites, China. Geochemical Journal, 36, 527-543.

     

    2001

    176. Wang Q., Zhao Z. H., Qiu J. X., Wang R. J., Xu J. F. 2001. The Formation of Yanshanian granitic magma in Dabie Mountains: Dehydration or aquifer melting – with Tiantanzhai and Jiuzihe granites as examples. Continental Dynamics, 6(2), 39-47.

    177. Xiong X. L., Zhao Z. H., Bai Z. H., Mei H. J., Wang Y. X., Wang Q., Xu J. F., Bao Z. W. 2001. Adakite-type sodium-rich rocks in Awulale Mountain of west Tianshan: Significance for the vertical growth of continental crust. Chinese Science Bulletin, 46(10), 811-817.

    178. Xu J. F., Mei H. J., Yu X. Y., Bai Z. H., Niu H. C., Chen F. R., Zhen Z. P., Wang Q. 2001. Adakites related to subduction in the northern margin of Junggar arc for the Late Paleozoic: Products of slab melting, Chinese Science Bulletin, 46(15), 1312-1316.

     

    2000

    179. Wang Q., Xu J., Wang J., Zhao Z., Qiu J., Wang R., Xiong X., Sang L., Peng L. 2000. The recognization of adakite-type gneisses in the North Dabie Mountains and its implication to ultrahigh pressure metamorphic geology. Chinese Science Bulletin, 45(21), 1927-1933.

    180. Xu J. F., Wang Q., Yu X. Y. 2000. Geochemistry of high-Mg Andesite and Adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Paleo-Tethyan crust and its implication. Geochemical Journal, 34, 359-377.

    承担科研项目情况:
  •   1. 2019-2022,“特提斯地球动力系统”重大研究计划的重点项目“青藏高原中北部Sn波不发育区地幔演化及深部过程” (91855215) ;
      2. 2019-2023,“第二次青藏高原综合科学考察研究”的任务“高原生长与演化”的专题“典型地区岩石圈组成、演化与深部过程”(2019QZKK0700);
      3. 2021-2025,国家自然科学基金委创新群体项目“陆内岩石圈演化与浅表响应”(42021002)。