• 姓名: 张修政
  • 性别: 男
  • 职务: 
  • 职称: 研究员
  • 学历: 博士研究生
  • 电话: 020-85292501
  • 传真: 
  • 电子邮件: zhangxz@gig.ac.cn
  • 通讯地址: 广州市天河区科华街511号
    简  历:
  •   张修政,研究员,1985年出生于陕西省安康市,基金委优秀青年科学基金获得者(2023。主要从事变质岩和变质作用研究,围绕特提斯构造演化和青藏高原新生代隆升机制两个方面开展研究工作,聚焦青藏高原中北部的关键变质岩石,重点关注深部高温-超高温麻粒岩地壳包体,通过系统的变质作用、地球化学以及热力学模拟研究,在造山带深部热演化与高原隆升方面取得多项创新成果。主持或参与了国家自然科学基金青年、面上、优青、重点和创新群体项目、国家重点研发专项、第二次青藏高原科考等项目的研究。已发表国内外学术论文50篇,其中以第一/通讯作者身份在GeologyEarth and Planetary Science LettersTectonicsGeochemistry, Geophysics, GeosystemsLithos等刊物发表SCI论文18篇。

        

      2023.01 至今     中国科学院广州地球化学研究所,研究员

      2018.01--2023.12  中国科学院广州地球化学研究所,副研究员

      2017.08--2018.01  中国科学院广州地球化学研究所,助理研究员

      2014.07--2017.08  中国科学院广州地球化学研究所,博士后

      2009.09--2014.06  吉林大学地球科学学院,构造地质学专业,硕博连读研究生

      2005.09--2009.07  吉林大学地球科学学院,地质学专业,本科学习

    社会任职:
  •  
    研究方向:
  •   1.深部地壳变质岩包体,关注造山带深部地壳热演化过程、热驱动机制以及深部热演化与浅表响应。

      2. 青藏高原中北部榴辉岩和蓝片岩,重点关注其俯冲和折返的深部动力学过程及相关B-Mo-Ti同位素研究

      3. 特提斯演化及冈瓦纳大陆重建,重点关注相关高压-超高压和高温-超高温变质岩研究

    获奖及荣誉:
  •  
    代表论著:
  • 第一/通讯作者论文:

    1. Zhang, X.Z., Wang, Q. *, Wyman, D., Ou, Q., Qi, Y., Gou, G.N., Dan, W., Yang, Y.N., 2022, Tibetan Plateau growth linked to crustal thermal transitions since the Miocene. Geology, 50(5): 610–614.

    2. Zhang, X. Z., Wang, Q.*, Wyman, D., Kerr, A., Dan, W., Qi, Y., 2022. Tibetan Plateau insights into >1100 crustal melting in the Quaternary. Geology, 50(12): 1432–1437.

    3. Zhang, X. Z., Dong, Y. S.*, Li, C., Deng, M. R., Zhang, L., Xu, W., 2014. Silurian high–pressure granulites from Central Qiangtang, Tibet: Constraints on early Paleozoic collision along the northeastern margin of Gondwana. Earth and Planetary Science Letters, 405, 39–51.

    4. Zhang, X.Z., * Wang, Q., Dan, W., Wyman, D., 2023, Locating Lhasa terrane in the Rodinia and Gondwana supercontinents: A key piece of the reconstruction puzzle: GSA Bulletin, 135(1-2): 67–80.

    5. Zhang, X.Z.*, Dong, Y. S., Wang, Q.*, Dan, W., Zhang, C., Deng, M. R., Xu, W., Xia, X.P., Zeng, J.P., Liang, H., 2016. Carboniferous and Permian evolutionary records for the Paleo‐Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet. Tectonics, 35(7), 1670–1686.

    6. Zhang, X.Z.*, Wang, Q.*, Dong, Y.-S., Zhang, C., Li, Q.-Y., Xia, X.-P., & Xu, W., 2017. High-pressure granulite facies overprinting during the exhumation of eclogites in the Bangong-Nujiang suture zone, central Tibet: Link to flat-slab subduction. Tectonics, 36(12), 2918–2935.

    7. Zhang, X.Z.*, Dong, Y. S, Wang, Q.*, Dan, W., Zhang, C., Xu, W., Huang, M.L., 2017. Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet‐staurolite‐muscovite schists in central qiangtang, Tibet. Geochemistry Geophysics Geosystems, 18(1), 266-279.

    8. Zhang, X.Z., Wang, Q.*, Wyman, D., Kerr, A., Gou G.-N., Dan, W., Qi, Y., 2023. Are low-velocity zones within the Tibetan crust the result of crustal melting from at least 28 Ma? Lithos, 440-441, https://doi.org/10.1016/j.lithos.2023.107044

    9. Zhang, X.Z., Wang, Q.*, Wyman, D., Kerr, A., Gou G.-N., Dan, W., Qi, Y., 2023, Sediment recycling by continental subduction indicated by B-Hf-Pb-Nd isotopes from Miocene–Quaternary lavas in the northern margin of Tibet? Lithos, https://doi.org/10.1016/j.lithos.2023.107109

    10. Fan, J.J., Zhang, X.Z*., Ma L., Wang Q., Jiang Z.Q., Xia, X.P., Wei, G.J., Wang, Z.L., Zhou, J.S., Li, Q.W., Liu, X., Huang, T.Y., Zhang, M.Y., Liu, J.H., 2023. Formation of Eocene–Miocene felsic magmatic rocks along N–S-trending Yardoi-Kongbugang mountain ranges in the eastern Himalaya: New insights into surface uplift and the initiation of E–W extension in southern Tibet. GSA Bulletin, https://doi.org/10.1130/B36617.1.

    11. Liu, J.-H., Gou, G.-N., Wang, Q.*, Zhang, X.Z.*, Guo, H.-F., 2022. Petrogenesis of Eocene high-silica granites in the Maliaoshan area, northern Tibet: Implications for the Eocene magmatic flare-up in the Northern Qiangtang Block: Journal of Asian Earth Sciences, p. 105268, https://doi.org/10.1016/j.jseaes.2022.105268.

    12. Xu, C.-B., Zeng, J.-P., Wang, Q.*, Zhang, X.Z.*, Ou, Q., Wang, J., Hao, L.-L., Chen, Y., 2022. Eocene adakitic quartz monzonites and granite porphyries from the northern Qiangtang Block, central Tibet: Partial melting of sediment-rich m lange. Front. Earth Sci., 10:953448, doi: 10.3389/feart.2022.953448.

    13. Fan, J.J., Wang Q.*, Wei, G.J., Li, J., Ma L., Zhang, X.Z.*, Jiang, Zi-Qi Ma, J.L., Zhou, J.S., Li, Q.W., Wang, Z.L., Liu, X., Huang, T.Y., Zhang, M.Y., 2023. Boron and molybdenum isotope evidence for source-controlled compositional diversity of Cenozoic granites in the eastern Tethyan Himalaya. Geochemistry Geophysics Geosystems, 24, e2022GC010629. https://doi.org/10.1029/2022GC010629

    14. Ou, Q., Wang, Q. *, Wyman, D., Zhang, X.Z. *, Hao, L.L., Zeng, J.P., Yang, J.H., Zhang, H.X., Hou, M.C., Qi, Y., Liu, Z., 2022, Formation of late Miocene silicic volcanic rocks in the central Tibetan Plateau by crustal anatexis of granulites. Lithos, 432–433, 106882.

    15. 张修政, 董永胜*, 解超明, 谢尧武. 2010a. 安多地区高压麻粒岩的发现及其意义. 岩石学报, 26 (7): 2106-2112

    16. 张修政, 董永胜*, 李才, 解超明, 杨韩涛, 王明. 2013. 青藏高原拉萨地块北部新元古代中期蛇绿混杂岩带的厘定及其意义. 岩石学报, 29 (2): 698-722.

    17. 张修政, 董永胜*, 李才, 解超明, 王明, 邓明荣, 张乐. 2014a. 从洋壳俯冲到陆壳俯冲和碰撞: 来自羌塘中西部地区榴辉岩和蓝片岩地球化学的证据. 岩石学报, 30 (10): 2821-2834

    18. 张修政, 董永胜*, 李才, 邓明荣, 张乐, 许王. 2014b. 羌塘中部晚三叠世岩浆活动的构造背景及成因机制以红脊山地区香桃湖花岗岩为例. 岩石学报, 30 (2): 547-564

    19. 张修政, 董永胜, 施建荣, .羌塘中部龙木错双湖缝合带中硬玉石榴石二云母片岩的成因及意义.地学前缘, 2010b,17(1):93-103.

    20. 张修政, 董永胜, 李才, .青藏高原羌塘中部不同时代榴辉岩的识别及其意义来自榴辉岩及其围岩40Ar-39Ar年代学的证据.地质通报, 2010c,29(12):1815-1824.

    21. 张修政, 董永胜, 李才, .青藏高原羌塘中部榴辉岩地球化学特征及其大地构造意义.地质通报, 2010d,29(12):1804-1814.

    22. 张修政, 董永胜, 王强,但卫.青藏高原羌塘中部高压变质带的研究进展及存在问题,地质通报,2018, 37(8):1406-1416

    合作论文:

    23. Qi, Y., Wang, Q., Wei, G-J., Wyman, D., Zhang, X-Z., Dan, W., Zhang., L., Yang, Y-N., 2023. Post-Collisional Silica-Undersaturated Bamaoqiongzong Volcanic Rocks from Northern Qiangtang: Indicators of the Mantle Heterogeneity and Geodynamic Evolution of Central Tibet, Journal of Petrology. https://doi.org/10.1093/petrology/egac123.

    24. Qi, Y., Wang, Q., Wei, G-J., Zhang, X-Z., Dan, W., Yang, Y-N., Hao, L-L., Hu, W-L., 2023. Oligocene high-MgO alkali basalts in central Tibet: implications for magma–mush mixing and mantle processes. Journal of Petrology, egad091, https://doi.org/10.1093/petrology/egad091

    25. Wang, J., Wang, Q*., Sun, P., Dan, W., Kerr, A. C., Zhang, Z.-P., Zhang, L., Wei, G., Dong, H., Hu, W.-L., Yang, Z.-Y., Zhang, X.-Z., Qi. Y., 2023. Crustal growth identified by high- 18O zircon and olivine: A perspective from ultramafic arc cumulates in southern Tibet, Journal of Petrology. https://doi.org/10.1093/petrology/egad052

    26. Dan, W., Murphy, J. Brendan,Tang, G-J, Zhang, X-Z, White, William M., Wang, Q, 2023. Cambrian-Ordovician magmatic flare-up in NE Gondwana: A silicic large igneous province?. GSA Bulletin, 135(5-6): 1618-1632. DOI: 10.1130/B36331.1

    27. Dan, W., Yu, Z.-W., Wang, Q., Tang, G.-J., Zhang, X.-Z., Wang, J., 2023. Origin of the Songpan–Garz terrane, Tibetan Plateau: a perspective from the tectonic evolution of the Palaeo-Tethys Ocean, Geological Society, London, Special Publications. https://doi.org/10.1144/sp542-2022-349

    28. Dan, W., Murphy, J.B., Wang, Q., Zhang, X.Z., Tang, G.J., 2022. Tectonic evolution of the Proto-Qiangtang Ocean and its relationship with the Palaeo-Tethys and Rheic oceans. Hynes, A. J. and Murphy, J. B. (eds) The Consummate Geoscientist: A Celebration of the Career of Maarten de Wit. Geological Society, London, Special Publications, 531, https://doi.org/10.1144/SP531-2022-146.

    29. Fan, J.-J., Wang, Q.*, Ma, L., Li, J., Zhang, X.-Z., Zhang, L., Wang, Z.-L., 2022. Extreme Mo isotope variations recorded in high-SiO2 granites: Insights into magmatic differentiation and melt–fluid interaction. Geochimica et Cosmochimica Acta, 334: 241–258, https://doi.org/10.1016/j.gca.2022.08.009.

    30. Hu, W.-L., Wang, Q.*, Tang, G.-J., Zhang, X.-Z., Qi, Y., Wang, J., Ma, Y.-M., Yang, Z.-Y., Sun, P., Hao, L.-L., 2022. Late Early Cretaceous magmatic constraints on the timing of closure of the Bangong–Nujiang Tethyan Ocean, Central Tibet. Lithos, 416-417, 106648 https://doi.org/10.1016/j.lithos.2022.106648.

    31. Ma, Y.*, Wang, Q.*, Yang, T., Ou, Q., Zhang, X.Z., Dan, W., Zhang, S., Wu, H., Li, H., Cao, L., Wang, J., Zou, D., Wang, H., 2022. Location of the Lhasa terrane in the Late Cretaceous and its implications for crustal deformation. Palaeogeography, Palaeoclimatology, Palaeoecology, 588, 110821, https://doi.org/10.1016/j.palaeo.2021.110821.

    32. Qi, Y., Wang, Q.*, Wei, G.-J., Zhang, X.-Z., Dan, W., Hao, L.-L., and Yang, Y.-N., 2021. Late Eocene post-collisional magmatic rocks from the southern Qiangtang terrane record the melting of pre-collisional enriched lithospheric mantle. GSA Bulletin, 133 (11-12): 2612–2624, https://doi.org/10.1130/B35864.1.

    33. Dan, W., Wang, Q., Murphy, J.B., Zhang, X.-Z., Xu, Y.-G., White, W.M., Jiang, Z.-Q., Ou, Q., Hao, L.-L., Qi, Y. 2021. Short duration of Early Permian Qiangtang-Panjal large igneous province: Implications for origin of the Neo-Tethys Ocean. Earth and Planetary Science Letters, 568, 117054, https://doi.org/10.1016/j.epsl.2021.117054.

    34. Dan W., Wang Q., White W.M., Li X.H., Zhang X.Z., Tang G.J., Ou Q., Hao L.L., Qi Y., 2021. Passive-margin magmatism caused by enhanced slab-pull forces in central Tibet. Geology, 49 (2): 130–134, https://doi.org/10.1130/G47957.1

    35. Qi, Y., Hawkesworth, C. J., Wang, Q*, Wyman, D. A., Li, Z.X., Dong, H., Ma, T., Chen, F., Hu, W.L., and Zhang, X.Z., 2021. Syn-collisional magmatic record of Indian steep subduction by 50 Ma. GSA Bulletin, 133 (5-6), 949–962, https://doi.org/10.1130/B35498.1.

    36. Wang, Q*, Hao, L., Zhang, X.Z., Zhou, J., Wang, J., Li, Q., Ma, L., Zhang, L., Qi, Y., Tang, G., Dan, W., and Fan, J., 2020. Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis. SCIENCE CHINA Earth Sciences, 63, 1992-2016, https://doi.org/10.1007/s11430-020-9678-y

    37. Wang, Q.*, Tang, G., Hao, L., Wyman, D., Ma, L., Dan, W., Zhang, X.Z., Liu, J., Huang, T., Xu, C., 2020. Ridge subduction, magmatism and metallogenesis. Science in China Earth Sciences, 63(10): 1499–1518, https://doi.org/10.1007/s11430-019-9619-9.

    38. Dan, W., Wang, Q., Zhang, X.-Z., and Tang, G.-J., 2020. Early Paleozoic S-type granites as the basement of Southern Qiantang Terrane, Tibet. Lithos, 356-357, 105395https://doi.org/10.1016/j.lithos.2020.105395

    39 Ma, Y.*, Wang, Q.*, Wang, J., Yang, T., Tan, X., Dan, W., Zhang,X.Z., Ma, L., Wang, Z.L.,  Hu,W.L., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W. 2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic. Geophysical Research Letters, 46, 689–697. https://doi.org/10.1029/2018GL080964.

    40. Dan, W., Wang, Q., Li, X.-H., Tang, G.-J., Zhang, C., Zhang, X.-Z., and Wang, J. 2019. Low 18O magmas in the carboniferous intra-oceanic arc, central Tibet: Implications for felsic magma generation and oceanic arc accretion. Lithos, 326-327, 28-38.

    41. Wang, J., Wang, Q.*, Zhang, C., Dan, W.*, Qi, Y., Zhang, X.-Z., Xia, X.-P. 2018. Late Permian bimodal volcanic rocks in the northern Qiangtang Terrane, central Tibet: evidence for interaction between the Emeishan plume and the Paleo-Tethyan subduction system. Journal of Geophysical Research: Solid Earth, 123, 123, 6540–6561, DOI:10.1029/2018JB015568.

    42. Yang, Z. Y., Wang, Q.*, Zhang, C., Dan, W., Zhang, X. Z., Qi, Y., Xia, X.-P., Zhao, Z. H. 2018. Rare earth element tetrad effect and negative Ce anomalies of the granite porphyries in southern Qiangtang Terrane, central Tibet: New insights into the genesis of highly evolved granites. Lithos, 312–313, 258–273. doi: 10.1016/j.lithos.2018.04.018.

    43. Dan, W., Wang, Q., Zhang, X.-Z., Zhang, C., Tang, G.-J., Wang, J., Ou, Q., Hao, L.-L., and Qi, Y., 2018, Magmatic record of Late Devonian arc-continent collision in the northern Qiangtang, Tibet: Implications for the early evolution of East Paleo-Tethys Ocean. Lithos, 308-309, 104-117.

    44. Wang, J., Gou, G.-N., Wang, Q.*, Zhang, C., Dan, W. *, Wyman, D.A., and Zhang, X.-Z., 2018, Petrogenesis of the Late Triassic diorites in the Hoh Xil area, northern Tibet: Insights into the origin of the high-Mg# andesitic signature of continental crust. Lithos, 300-301, 348-360, DOI: 10.1016/j.lithos.2017.12.007.

    45. Dan, W., Wang, Q., White, W.M., Zhang, X.-Z., Tang, G.-J., Jiang, Z.-Q., Hao, L.-L., and Ou, Q. 2018. Rapid formation of eclogites during a nearly closed ocean: Revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau. Chemical Geology, 477, 112-122., DOI: 10.1016/j.chemgeo.2017.12.012.

    46. Wang, Q.*, Hawkesworth, C. J. *, Wyman, D., Chung, S.-L., Wu, F.-Y. Li, X.-H., Li, Z.-X., Gou, G.-N., Zhang, X.-Z., Tang, G.-J., Dan, W., Ma, L., Dong, Y.-H. 2016. Pliocene–Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 7:11888, doi: 10.1038/ncomms11888.

    47. Xu, W., Dong, Y., Zhang, X.Z., Deng, M., & Zhang, L. (2016). Petrogenesis of high-Ti mafic dykes from southern qiangtang, tibet: implications for a ca. 290 ma large igneous province related to the early permian rifting of gondwana. Gondwana Research, 36, 410-422.

    48. 王强,苟国宁,张修政,但卫,唐功建,马林. 2017. 青藏高原中北部地壳流动与高原扩展:来自火山岩的证据. 中国科学基金306):492-498.

    49. 姜庆运, 但卫, 王强, 张修政, 唐功建, 2021. 青藏高原北羌塘三叠纪花岗岩中发现新元古代的基底信息:来自锆石SIMS U-Pb年龄和Hf-O同位素的约束. 大地构造与成矿学, 45(02): 389-400.

    50. 但卫, 王强, 马林, 唐功建, 张修政, 2023. 俯冲板块板内岩浆作用和动力学. 矿物岩石地球化学通报, 42 (5), 10.19658/j.issn.1007-2802.2023.42.048

    承担科研项目情况:
  •   1. 国家自然科学基金委,优秀青年科学基金项目,《岩石学》,2024.012026.12项目负责人

      2. 国家自然科学基金委员会, 面上项目,《青藏高原中北部28–2.3Ma岩浆岩中地壳包体及深部地壳组成与热演化》,2019-012022-12,项目负责人

      3. 科学技术部,第二次青藏高原综合科学考察研究,《典型地区岩石圈组成、演化与深部过程》子专题12019-112024-10,主持

      4. 广州市科学技术局,广州市“科技菁英领航”项目,《造山带深部地壳组成与热演化》,2024-012026-12,项目负责人

      5. 广州市科学技术局,广州市珠江科技新星人才项目,《青藏高原深部地壳的热演化与高原隆升》,2019-042021-03,项目负责人

      6. 科学技术部,国家任务/国家重点研发计划,《燕山期重大地质事件的深部过程与资源效应:扬子西缘及邻区中生代的洋陆格局》(子专题),2016-072020-12,主持

      7. 国家自然科学基金委员会, 青年科学基金项目,《羌塘香桃湖地区与早古生代高压变质岩共生的多期深熔作用》,2016-012018-12,项目负责人