• 姓名: 马林
  • 性别: 男
  • 职务: 
  • 职称: 研究员
  • 学历: 博士研究生
  • 电话: 
  • 传真: 
  • 电子邮件: malin@gig.ac.cn
  • 通讯地址: 广州市天河区科华街511号
    简  历:
  •   马林研究员、博士生导师,基金委优秀青年科学基金获得者(2021),现任同位素地球化学国家重点实验室党支部书记,所党委委员,学位委员会委员。主要从事岩石地球化学研究,在青藏高原南部洋?-陆俯冲转换的精细化深部动力学重建和地壳生长演化方面提出了新认识。主持或参与了国家自然科学基金青年、面上、优青、重点和创新群体项目、国家重点研发专项、第二次青藏高原科考、中科院战略先导专项等项目的研究。已发表国内外学术论文53篇,其中以第一/通讯作者身份在Geology、Geochimica et Cosmochimica Acta、Journal of Geophysics Research、Journal of Petrology、Chemical Geology和Lithos等刊物发表SCI论文20篇。Google Scholar论文被引用1600余次,H?-index19。曾获得中国科学院院长优秀奖(2013),入选中国科学院青年创新促进会(2017),现任国际综合性期刊《The Innovation》与核心期刊《地球化学》青年编委,长期为Nat. Comm.、Geology、GCA、JPet、Tectonics、GSAB、Lithos等学术刊物审稿,2016、2018年度Lithos突出贡献审稿人(Outstanding Contribution in Reviewing),2017年度Journal of Asian Earth Science突出贡献审稿人。指导的研究生获中科院院长优秀奖与朱李月华优秀博士生奖。

      

      2022.01-至今    中国科学院广州地球化学研究所,研究员;

      2022.04-至今    中国科学院广州地球化学研究所,学位委员会委员;

      2021.04-至今    中国科学院广州地球化学研究所,党委委员;

      2019.10-至今    同位素地球化学国家重点实验室,党支部书记;

      2019.9-2019.12   英国Cardiff University,高级访问学者;

      2016.11-2017.10  英国Cardiff University,访问学者;

      2016.01-2021.01  中国科学院广州地球化学研究所,副研究员;

      2013.07-2015.12  中国科学院广州地球化学研究所,助理研究员;

      2009.07-2013.06  中国科学院广州地球化学研究所岩石地球化学专业,博士;

      2006.09-2009.06  中国科学院广州地球化学研究所构造地质学专业,硕士;

      2002.09-2006.07  兰州大学资源环境学院地质学系地质学专业,学士。 

     

    社会任职:
  •  
    研究方向:
  •   1) 板片汇聚边缘岩浆岩岩石学与大陆动力学,主要关注洋-陆俯冲转换阶段岩浆岩成因,以及深部动力学过程的浅表响应;

      2) 显生宙大陆地壳生长与演化,主要关注大陆地壳的形成、保存与成分分异演化及机制;

      3) 弧地壳岩浆过程、物质循环与金属成矿,重点关注俯冲带物质迁移、扩散、循环和高温过程中的年代学与同位素分馏效应、机制与应用。 

     

    获奖及荣誉:
  •   2021年8月,国家基金委优秀青年科学基金
      2021年7月,中国科学院广州地球化学研究所优秀党务工作者
      2019年7月,中国科学院广州地球化学研究所优秀共产党员
      2016年11月,中国科学院青年创新促进会 
      2016、2018年度,《Lithos》突出贡献审稿人(Outstanding Contribution in Reviewing)
      2017年度,《Journal of Asian Earth Science》突出贡献审稿人
      2013年7月,中国科学院院长优秀奖
      2013年7月,北京市教育局优秀毕业生
      2013年3月,教育部研究生国家奖学金
      2012年7月,中国科学院研究生院三好学生标兵
      2009年7月,中国科学院研究生院优秀毕业生
      2009年7月,中国科学院研究生院三好学生标兵
      2008年7月,中国科学院研究生院优秀学生干部
      2008年7月,中国科学院研究生院三好学生 
      2007年7月,中国科学院研究生院三好学生
      2005年2月,兰州大学大学生创新创业计划优秀作品奖
      2004年10月,兰州大学社会实践先进个人
      2004年5月,兰州大学优秀学生会干部
      2004年5月,兰州大学优秀共青团员
    代表论著:
  • 2023

    [1]. Ma, L., Wang, Q., Kerr, A.C., Li, Z.X., Dan, W., Yang, Y.N., Zhou, J.S., Wang, J., Li, C., 2023. Eocene magmatism in the Himalaya: Response 1 to lithospheric flexure during early Indian collision? Geology, 51(1), 96–100, DOI:10.1130/G50438.1.

    2022

    [2]. Wang, J., Gleeson, M., Smith, W.D., Ma, L., Lei, Z.B., Shi, G.H., Chen, L., 2022. The Factors Controlling Along-arc and Across-arc Variations of Primitive Arc Magma Compositions: A Global Perspective, Frontiers in Earth Science. DOI: 10.3389/feart.2022.1055255

    [3]. Zhou, J.S., Huang, C.C., Wang, Q., Ren, Z.Y., Ma, L., Hao L.L., Zhang L., 2022. Olivines and Their Melt Inclusions in Potassic Volcanic Rocks Record Mantle Heterogeneity beneath the Southern Tibet, Journal of Petrology, 63(11), https://doi.org/10.1093/petrology/egac103.

    [4]. Fan, J. J., Wang, Q., Ma, L., Li, J., Zhang, X.Z., Zhang, L., Wang, Z.L., 2022. Extreme Mo isotope variations recorded in high-SiO2 granites: Insights into magmatic differentiation and melt–fluid interaction. Geochimica et Cosmochimica Acta, 334, 241-258. https://doi.org/10.1016/j.gca.2022.08.009.

    [5]. Zhang, M.-Y., Hao, L.-L., Wang, Q., Qi, Y., Ma, L., 2022. B–Sr–Nd isotopes of Miocene trachyandesites in Lhasa block of southern Tibet: Insights into petrogenesis and crustal reworking. Frontiers in Earth Science, 10:953364, doi: 10.3389/feart.2022.953364.

    [6]. Hao, L. L., Wang, Q., Ma, L., Qi, Y., & Yang, Y. N., 2022. Differentiation of continent crust by cumulate remelting during continental slab tearing: Evidence from Miocene high-silica potassic rocks in southern Tibet. Lithos, 426-427, 106780.

    [7]. Liu, X., Liang, H., Wang, Q.*, Ma, L.*, Yang, J.H., Guo, H.F., Xiong, X.L., Ou, Q., Zeng, J.P., Gou, G.N., Hao, L.L., 2022. Early Cretaceous Sn-bearing granite porphyries, A-type granites, and rhyolites in the Mikengshan–Qingxixiang–Yanbei area, South China: Petrogenesis and implications for ore mineralization. Journal of Asian Earth Sciences,105274.

    [8]. Tang, G.J., Wyman, D.A., Wang, Q. Ma, L., Dan, W., Yang, Y.N., Liu, X.J., Chen, H.Y., 2022. Links between continental subduction and generation of Cenozoic potassic–ultrapotassic rocks revealed by olivine oxygen isotopes: A case study from NW Tibet. Contributions to Mineralogy and Petrology, 177, 53. https://doi.org/10.1007/s00410-022-01920-x

    [9]. Hao, L.L., Wang, Q., Kerr, A.C., Wei, G.J., Huang, F., Zhang, M.Y., Qi, Y., Ma, L., Chen, X.F., Yang, Y.N., 2022. Contribution of continental subduction to very light B isotope signatures in post-collisional magmas: Evidence from southern Tibetan ultrapotassic rocks. Earth and Planetary Science Letters, 584, 117508. https://doi.org/10.1016/j.epsl.2022.117508.

    [10]. Huang T.Y., Wang, Q., Wyman, D.A., Ma, L., Zhang, Z.P., Dong, H., 2022. Subduction erosion revealed by Late Mesozoic magmatism in the Gangdese arc, South Tibet. Geophysical Research Letters. 49, e2021GL097360. https://doi.org/10.1029/2021GL097360.

    [11]. 马林*,王强,唐功建,李成. 2022. 冈底斯陆壳属性与显生宙生长演化. 大地构造与成矿学. 46(6), 1170-1184. doi: 10.16539/j.ddgzyckx.2022.04.000

    [12]. 耿啟凡,马林*. 拉萨南部始新世曲水辉长岩成因及其对同碰撞岩浆活动的指示意义. 大地构造与成矿学. (待刊)

    2021

    [13]. Ma, L., Gou, G.N., Kerr, A.C., Wang, Q.*, Wei, G.J., Yang, J.H., Shen, X.M., 2021. B isotopes reveal Eocene m lange melting in northern Tibet during continental subduction. Lithos, 106146, https://doi.org/10.1016/j.lithos.2021.106146.

    [14]. Ma, L.*, Wang, Q., Kerr, A.C., Tang, G.J., (2021). Nature of the pre-collisional lithospheric mantle in Central Tibet: Insights to Tibetan Plateau uplift. Lithos, 106076. https://doi.org/10.1016/j.lithos.2021.106076

    [15]. Fan, J.-J., Wang, Q.*, Li, J., Wei, G.-J., Ma, J.-L., Ma, L.*, Li, Q.-W., Jiang, Z.-Q., Zhang, L., Wang, Z.-L., and Zhang, L., 2021, Boron and molybdenum isotopic fractionation during crustal anatexis: Constraints from the Conadong leucogranites in the Himalayan Block, South Tibet. Geochimica et Cosmochimica Acta, 297, 120-142. https://doi.org/10.1016/j.gca.2021.01.005.

    [16]. Liu, X., Wang, Q.*, Ma, L.*, Yang, J.H., Ma, Y.M., and Huang, T.Y., 2021. Early Paleozoic and Late Mesozoic crustal reworking of the South China Block: Insights from Early Silurian biotite granodiorites and Late Jurassic biotite granites in the Guangzhou area of the south-east Wuyi-Yunkai orogeny. Journal of Asian Earth Sciences, 219: 104890.

    [17]. Liu, X., Wang, Q.*, Ma, L.*, Gou, G.N., Ou, Q. and Wang, J., 2021. Late Jurassic Maofengshan two‐mica granites in Guangzhou, South China: fractional crystallization products of metasedimentary‐rock‐derived magmas. Mineralogy and Petrology, 1-19. https://doi.org/10.1007/s00710-020-00733-9

    [18]. Zhou, J.S., Wang, Q., Xing, C.M., Ma, L., Hao, L.L., Li, Q.W., Wang, Z.L., Huang, T.Y., 2021. Crystal growth of clinopyroxene in mafic alkaline magmas. Earth and Planetary Science Letters. 568: 117005. https://doi.org/10.1016/j.epsl.2021.117005.

    [19]. Yang, Z.Y., Wang, Q., Hao, L.L., Wyman, D.A., Ma, L., Wang, J., Qi, Y., Sun, P. and Hu, W.L., 2021. Subduction erosion and crustal material recycling indicated by adakites in central Tibet. Geology. 49(6): 708–712, https://doi.org/10.1130/G48486.1

    [20]. Hu, W.-L., Wang, Q*, Yang, J.-H., Tang, G.-J., Ma, L., Yang, Z.-Y., Qi, Y., and Sun, P., 2021. Petrogenesis of Late Early Cretaceous high-silica granites from the Bangong–Nujiang suture zone, Central Tibet. Lithos, 402–403, 105788.  https://doi.org/10.1016/j.lithos.2020.105788.

    [21]. Hao L.-L., Wang, Q*, Kerr A. C., Yang J.-H., Ma L., Qi Y., Wang J., and Ou Q. 2021. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. GSA Bulletin, 133 (7-8), 1634–1648, https://doi.org/10.1130/B35659.1.

    [22]. Xia X.-P., Meng J.-T., Ma L., Spencer C.J., Cui Z.X., Zhang W.F., Yang Q., Zhang L., 2021. Tracing magma water evolution by H2O-in-zircon: A case study in the Gangdese batholith in Tibet. Lithos, 106445. https://doi.org/10.1016/j.lithos.2021.106445.

    [23]. 蒙均桐,夏小平,马林,姜子琦,徐健,崔泽贤,杨晴,张万峰,张乐. 西藏冈底斯地区壳源岩浆水含量差异:来自锆石水含量的启示. 中国科学:地球科学, 51, doi: 10.1360/SSTe-2020-0366

    [24]. 刘潇,王强,马林*,王军. 2021. 广州市白云山片麻状花岗岩成因及构造意义. 地球化学50(4), 340–353.

    2020

    [25]. Liu, X., Wang, Q.*, Ma, L.*, Yang, J.H., Gou, G.N., Ou, Q. and Wang, J., 2020. Early Paleozoic intracontinental granites in the Guangzhou region of South China: Partial melting of a metasediment-dominated crustal source. Lithos, 376, p.105763.

    [26]. Liu, X., Wang, Q.*, Ma, L.*, Wyman, D.A., Zhao, Z.H., Yang, J.H., Zi, F., Tang, G.J., Dan, W., Zhou, J.S.. 2020. Petrogenesis of Late Jurassic Pb–Zn mineralized high 18O granodiorites in the western Nanling Range, South China. Journal of Asian Earth Sciences, 192, 104236. https://doi.org/10.1016/j.jseaes.2020.104236.

    [27]. Liu X., Wang Q.*, Ma L.*, Yang Z.Y., Hu W.L., Ma, Y.M., Wang J., Huang T.Y., 2020. Petrogenesis of Late Jurassic two-mica granites and associated diorites and syenite porphyries in Guangzhou, SE China. Lithos. 364-365, 105537.

    [28]. Hao, L.L., Wang, Q., Kerr, A.C., Yang, J.H., Ma, L., Qi, Y., Wang, J. and Ou, Q., 2020. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. GSA Bulletin. doi: https://doi.org/10.1130/B35659.1

    [29]. Hu, W.L., Wang, Q., Yang, J.H., Tang, G.J., Qi, Y., Ma, L., Yang, Z.Y., Sun, P., 2020. Amphibole and whole-rock geochemistry of early Late Jurassic diorites, Central Tibet: Implications for petrogenesis and geodynamic processes. Lithos, 105644. https://doi.org/10.1016/j.lithos.2020.105644.

    [30]. Fan, J.J., Li, J., Wang, Q., Zhang, L., Zhang, J., Zeng, X.L., Ma, L., Wang, Z.L., 2020. High-precision molybdenum isotope analysis of low-Mo igneous rock samples by MC–ICP–MS. Chemical Geology. 545, 119648. https://doi.org/10.1016/j.chemgeo.2020.119648.

    [31]. Tang, G.J.*, Wang, Q., Wyman, D.A., Dan, W., Ma, L., Zhang, H.X., Zhao, Z.H.. 2020. Petrogenesis of the Ulungur Intrusive Complex, NW China, and Implications for Crustal Generation and Reworking in Accretionary Orogens. Journal of Petrology, https://doi.org/10.1093/petrology/egaa018

    [32]. 王强,唐功建,郝露露,Derek Wyman马林,但卫,张修政,刘金恒,黄彤宇,许传兵. 2020. 洋脊俯冲岩浆作用与成矿. 中国科学:地球科学, 63, 1499–1518. https://doi.org/10.1007/s11430-019-9619-9

    [33]. 徐义刚,王强,唐功建,王军,李洪颜,周金胜,李奇维,齐玥,刘平平,马林,范晶晶. 2020. 弧玄武岩起源:新进展与存在问题. 中国科学:地球科学63, 1969–1991. https://doi.org/10.1007/s11430-020-9675-y

    [34]. 王强,郝露露,张修政,周金胜,王军,李奇维,马林,张龙,齐玥,唐功建,但卫,范晶晶. 2020. 汇聚板块边缘的埃达克岩:成分与成因.中国科学:地球科学63, 1992–2016. https://doi.org/10.1007/s11430-020-9678-y

    2019

    [35]. Ma, L., Kerr, A. C., Wang, Q., Jiang, Z.‐Q., Tang, G.‐J., Yang, J.‐H., et al. (2019). Nature and evolution of crust in southern Lhasa, Tibet: Transformation from microcontinent to juvenile terrane. Journal of Geophysical Research: Solid Earth, 124, 6452–6474. https://doi.org/10.1029/2018JB017106. 

    [36]. Hao, LL; Wang, Q; Wyman, DA; Yang, JH; Huang, F., Ma, L., Crust-mantle mixing and crustal reworking of southern Tibet during Indian continental subduction: Evidence from Miocene high-silica potassic rocks in Central Lhasa block. Lithos, 2019, 342: 407-419.

    [37]. Ou, Q., Wang, Q., Wyman, D.A., Zhang, C.F., Hao, L.L., Dan, W., Jiang, Z.Q., Wu, F.Y, Yang, J.H., Zhang, H.X., Xia, X.P., Ma, L., Long, X.P., Li, J., Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. Geological Society of America Bulletin, 2019, 131(7-8): 1385-1408.

    [38]. Hao, L. L., Wang, Q., Wyman, D. A., Ma, L., Wang, J., Xia, X. P., Ou, Q. 2019. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan orogen. Geology. 47(2), 187–190.

    [39]. Yang, Z.Y., Wang, Q., Yang, J.H., Dan, W., Zhang, X.Z., Ma, L., Qi, Y., Wang, J., Sun, P., 2019. Petrogenesis of Early Cretaceous granites and associated microgranular enclaves in the Xiabie Co area, central Tibet: Crust-derived magma mixing and melt extraction. Lithos. 350–351, 105199. https://doi.org/10.1016/j.lithos.2019.105199

    [40]. Ma, Y.M. Wang, Q., Wang, J., Yang, T.S., Tan, X.D., Dan, W., Zhang, X.Z., Ma, L., Wang, Z.L., Hu, W.L., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W., 2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic. Geophysical Research Letters, 46, 689–697.

    [41]. Yang, Z.Y., Wang, Q., Zhang, C.F., Yang, J.H., Ma, L., Wang, J., Sun, P., Qi, Y., 2019. Cretaceous (~100?Ma) high-silica granites in the Gajin area, Central Tibet: Petrogenesis and implications for collision between the Lhasa and Qiangtang Terranes. Lithos, 324–325402-417.

    2018

    [42]. Ma, L., Kerr, A.C., Wang, Q., Jiang, Z.Q., Hu, W.L., 2018. Early Cretaceous (~140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: products of crust-mantle interaction during lithospheric extension. Lithos, 300-301, 212-226. doi: 10.1016/j.lithos.2017.11.023.

    [43]. Hao, L. L., Wang, Q.*, Wyman, D. A., Qi, Y., Ma, L., Huang, F., Zhang, L., Xia, X. P., Ou, Q.. 2018. First identification of mafic igneous enclaves in Miocene lavas of southern Tibet with implications for Indian continental subduction. Geophysical Research Letters, 45(16), 8205-8213. https://doi.org/10.1029/2018GL079061.

    [44]. Shen, X., Zhang, H.X., Wang, Q., Saha, A., Ma, L., 2018. Zircon U–Pb geochronology and geochemistry of Devonian plagiogranites in the Kuerti area of southern Chinese Altay, northwest China: Petrogenesis and tectonic evolution of late Paleozoic ophiolites. Geological Journal, 53(5), 1886-1905. doi: 10.1002/gj.3020. 

    2017

    [45]. Ma, L., Wang, Q., Kerr, A.C., Yang, J.H., Xia, X.P., Ou, Q., Yang, Z.Y., Sun, P., 2017. Paleocene (ca. 62 Ma) leucogranites in southern Lhasa, Tibet: products of syn-collisional crustal anatexis during slab roll-back? Journal of Petrology, 58(11): 2089-2114.

    [46]. Ma, L., Wang, Q., Li, Z.X., Wyman, D.A., Yang, J.H., Jiang, Z.Q., Liu, Y.S., Gou, G.N., Guo, H.F. 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (~35 Ma): Insights from the Quguosha gabbros in southern Lhasa block. Gondwana Research, 41, 77-92, doi:10.1016/j.gr.2016.02.005.

    [47]. 王强,但卫,纪伟强,张修政,梁华英,朱弟成,夏小平,马林. 2017.中国西部燕山运动及岩浆作用与成矿. 矿物岩石地球化学通报36(4): 570-573.

    [48]. 王强,苟国宁,张修政,但卫,唐功建,马林. 2017. 青藏高原中北部地壳流动与高原扩展: 来自火山岩的证据.中国科学基金. 2017:2, 492-498.

    2016

    [49]. Wang, Q., Hawkesworth, C. J., Wyman, D. A., Chung, S. L., Wu, F. Y., Li, X. H., Li, Z. X., Gou G. N., Zhang, X. Z., Tang, G. J., Dan, W., Ma, L., Dong, Y. H., 2016. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature communications, 7:11888, doi: 10.1038/ncomms11888.

    2015

    [50]. Ma, L., Wang, Q., Wyman, D. A., Jiang, Z.Q., Wu, F.Y., Li, X.H., Yang, J.H., Gou, G.N., Guo, H.F. 2015. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases, Journal of Geophysics Research: Solid Earth, 120, 6159–6181, doi:10.1002/2015JB011966.

    [51]. Jiang, Z. Q., Wang, Q., Wyman, D. A., Shi, X., Yang, J. H., Ma, L., Gou, G. N., 2015. Zircon U-Pb geochronology and geochemistry of Late Cretaceous–early Eocene granodiorites in the southern Gangdese batholith of Tibet: petrogenesis and implications for geodynamics and Cu Au Mo mineralization. International Geology Review, 57:3, 373-392.

    2014

    [52]. Ma, L., Wang, B.D., Jiang, Z.Q., Wang, Q.*, Li, Z.X., Wyman, D.A., Zhao, S.R., Yang, J.H., Gou, G.N., Guo, H.F., 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 196-197, 321-338.

    [53]. Shen, X.M., Zhang, H.X., Wang, Q., Ma, L., Yang, Y.H. 2014. Early Silurian (~440Ma) adakitic, andesitic and Nb-enriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): Slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 206-207: 234-251.

    [54]. Jiang, Z., Wang, Q., Wyman, D., Li, Z., Yang, J., Shi, X., Tang, G., Jia, X., Ma, L., Gou, G., Guo, H.. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196-197: 213-231.

    2013

    [55]. Ma, L., Wang, Q.*, Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.L., Gou, G.N., Guo, H.F., 2013. Late Cretaceous crustal growth of southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from the Zhengga diorite-gabbro suites in the Gangdese area. Chemical Geology. 349–350, 54–70.

    [56]. Ma, L., Wang, Q.*, Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F., 2013. Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100-80 Ma) magmatic "flare-up" in southern Lhasa (Tibet). Lithos. 172–173, 17–30.

    [57]. Ma, L., Wang, Q.*, Wyman, D.A., Li, Z.X., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F.. 2013. Late Cretaceous (100-89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos. 175–176, 315–332.

    [58]. 沈晓明, 张海祥, 马林, 阿尔泰南缘晚石炭世淡色花岗岩的发现及其构造意义, 大地构造与成矿学, 2013, 37(4): 721-729.

    [59]. 沈晓明, 张海祥, 马林, 阿尔泰南缘杰尔库都克酸性岩脉LA-ICP-MS锆石U-Pb测年, 新疆地质, 2013, 31(3): 157-161.

    [60]. 沈晓明, 张海祥, 马林, 新疆阿尔泰地区库尔提蛇绿岩的锆石U-Pb和角闪石40Ar/39Ar年代学及其地质意义, 桂林理工大学学报, 2013, 33(3): 394-405.

    2012及以前

    [61]. Qiang Wang, Xian-Hua Li, Xiao-Hui Jia, Derek Wyman, Gong-Jian Tang, Zheng-Xiang Li, Lin Ma, Yue-Heng Yang, Zi-Qi Jiang, Guo-Ning Gou. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium‐rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): partial melting of lower crust and mantle and magma hybridization. Chemical Geology, 328, 222-243.

    [62]. 沈晓明, 张海祥, 马林. 2010. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据. 大地构造与成矿学, 34(2): 181-195.

    [63]. 马林,张海祥,张伯友,牛贺才. 2008. 新疆北部库尔提蛇绿岩中角闪片岩的原岩恢复及其成因.岩石学报244):673-680.

    [64]. 张海祥,牛贺才,沈晓明,马林,于学元. 2008. 阿尔泰造山带南缘和准噶尔板块北缘晚古生代构造演化及多金属成矿作用. 矿床地质27(5): 596-604.

    [65]. 张海祥,沈晓明,马林,牛贺才,于学元. 2008. 新疆北部富蕴县埃达克岩的同位素年代学及其对古亚洲洋板块俯冲时限的制约. 岩石学报24(5):1054-1058.

    [66]. 马林, 张海祥, 沈晓明.2008. 库尔提角闪片岩中角闪石的地球化学特征及成因讨论. 矿物岩石地球化学通报, 27(增刊):262-264.

    [67]. Haixiang Zhang, Xiaoming Shen, Lin Ma. 2008. Geochronology of the Altay adakite and the initiation of the Paleo-Asian Ocean subduction. Geochimica et Cosmochimica Acta. 72 (12S), A1081.

     

    承担科研项目情况:
  •   1.国家自然科学基金委优秀青年科学基金《科希斯坦弧地球成熟演化机制及动力学》,2022-2024,主持

      2.国家自然科学基金委面上基金《羌塘西部红山湖钠质基性岩岩石成因及其对青藏高原地幔演化的启示》,2019-2022,主持

      3.国家第二次青藏高原综合科学考察研究专题《典型地区岩石圈组成、演化与深部过程》,2019-2022,参加

      4.国家自然科学基金委创新研究群体科学基金《陆内岩石圈演化与浅表响应》,2021-2024,参加

      5.中国科学院丝路环境先导专项子子课题《泛第三极主要与大规模成矿有关重要岩浆作用与动力学机制》,2018-2022,参加

      6.国家重点研发计划深地资源勘查开采专项“青藏高原碰撞带壳幔过程与成岩成矿实验”第9课题第三专题《正向碰撞带深部岩石圈组成和热演化过程对成矿作用的制约》,2016-2020,主持

      7.国家自然科学基金委青年科学基金项目《拉萨地块南部正嘎早古新世淡色花岗岩的成因及其对印度-亚洲大陆碰撞的启示》,2015-2017,主持

       

    研究生培养情况:

      黄橙橙(女) 硕士(合作培养2015-2017)

      刘潇               博士(合作培养2016-2021)

      范晶晶(女) 博士(合作培养2017-2021)

      耿啟凡           硕士(2018-2022)

      李成              硕士研究生在读(2020- )

      乔伟              硕士研究生在读(2021- )

      蒲瑞    (女)硕士研究生在读(2022- )